A047350 Numbers that are congruent to {1, 2, 4} mod 7.
1, 2, 4, 8, 9, 11, 15, 16, 18, 22, 23, 25, 29, 30, 32, 36, 37, 39, 43, 44, 46, 50, 51, 53, 57, 58, 60, 64, 65, 67, 71, 72, 74, 78, 79, 81, 85, 86, 88, 92, 93, 95, 99, 100, 102, 106, 107, 109, 113, 114, 116, 120, 121, 123, 127, 128, 130, 134, 135, 137, 141
Offset: 1
Links
- Leonhard Euler, The Euler Archive, Theoremata circa divisores numerorum (E134), Novi Commentarii academiae scientiarum imperialis Petropolitanae, Volume 1 (1750), p. 40 (Theorem II, example 2).
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
Programs
-
Magma
[n : n in [0..150] | n mod 7 in [1, 2, 4]]; // Wesley Ivan Hurt, Jun 13 2016
-
Maple
A047350:=n->(21*n-21-6*cos(2*n*Pi/3)+4*sqrt(3)*sin(2*n*Pi/3))/9: seq(A047350(n), n=1..100); # Wesley Ivan Hurt, Jun 13 2016
-
Mathematica
Select[Range[0, 150], MemberQ[{1, 2, 4}, Mod[#, 7]] &] (* Wesley Ivan Hurt, Jun 13 2016 *)
-
PARI
a(n)=n\3*7+[-3,1,2][n%3+1] \\ Charles R Greathouse IV, Jul 31 2011
Formula
From R. J. Mathar, Apr 28 2009: (Start)
G.f.: x*(1 + x + 2*x^2 + 3*x^3)/((1 + x + x^2)*(x-1)^2).
a(n) = a(n-1) + a(n-3) - a(n-4) for n > 4.
a(n) = a(n-3) + 7 for n > 3. (End)
From Wesley Ivan Hurt, Jun 13 2016: (Start)
a(n) = (21*n - 21 - 6*cos(2*n*Pi/3) + 4*sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 7k-3, a(3k-1) = 7k-5, a(3k-2) = 7k-6. (End)
a(n) = 4*n - 3 - 2*floor(n/3) - 3*floor((n+1)/3). - Ridouane Oudra, Nov 23 2022
Comments