A047362 Numbers that are congruent to {2, 3, 4, 5} mod 7.
2, 3, 4, 5, 9, 10, 11, 12, 16, 17, 18, 19, 23, 24, 25, 26, 30, 31, 32, 33, 37, 38, 39, 40, 44, 45, 46, 47, 51, 52, 53, 54, 58, 59, 60, 61, 65, 66, 67, 68, 72, 73, 74, 75, 79, 80, 81, 82, 86, 87, 88, 89, 93, 94, 95, 96, 100, 101, 102, 103, 107, 108, 109, 110
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
Magma
[n : n in [0..150] | n mod 7 in [2, 3, 4, 5]]; // Wesley Ivan Hurt, Jun 03 2016
-
Maple
A047362:=n->(14*n-7-3*(I^(2*n)+(1-I)*I^(-n)+(1+I)*I^n))/8: seq(A047362(n), n=1..100); # Wesley Ivan Hurt, Jun 03 2016
-
Mathematica
Select[Range[100], MemberQ[{2,3,4,5}, Mod[#,7]]&] (* or *) LinearRecurrence[{1,0,0,1,-1}, {2,3,4,5,9}, 60] (* Harvey P. Dale, Oct 03 2015 *)
Formula
G.f.: x*(2*x^2+3*x+2)*(x^2-x+1) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Dec 04 2011
From Wesley Ivan Hurt, Jun 03 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (14*n-7-3*(i^(2*n)+(1-i)*i^(-n)+(1+i)*i^n))/8 where i=sqrt(-1).