A047377 Numbers that are congruent to {0, 1, 4, 5} mod 7.
0, 1, 4, 5, 7, 8, 11, 12, 14, 15, 18, 19, 21, 22, 25, 26, 28, 29, 32, 33, 35, 36, 39, 40, 42, 43, 46, 47, 49, 50, 53, 54, 56, 57, 60, 61, 63, 64, 67, 68, 70, 71, 74, 75, 77, 78, 81, 82, 84, 85, 88, 89, 91, 92, 95, 96, 98, 99, 102, 103, 105, 106, 109, 110
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
Magma
[n : n in [0..150] | n mod 7 in [0, 1, 4, 5]]; // Wesley Ivan Hurt, May 24 2016
-
Maple
A047377:=n->(14*n-15-3*I^(2*n)+(1-I)*I^(-n)+(1+I)*I^n)/8: seq(A047377(n), n=1..100); # Wesley Ivan Hurt, May 24 2016
-
Mathematica
Table[(14n-15-3*I^(2n)+(1-I)*I^(-n)+(1+I)*I^n)/8, {n, 80}] (* Wesley Ivan Hurt, May 24 2016 *) Select[Range@ 120, MemberQ[{0, 1, 4, 5}, Mod[#, 7]] &] (* Michael De Vlieger, May 24 2016 *) a[n_] := n + Floor[(n - 1)/2] + Floor[(n - 3)/4]; Table[a[n], {n, 1, 64}] (* Peter Luschny, Dec 23 2021 *)
Formula
a(n+1) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=1, b(1)=4 and b(k)=7*2^(k-2) for k>1. - Philippe Deléham, Oct 25 2011
G.f.: x^2*(1+3*x+x^2+2*x^3) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Dec 04 2011
From Wesley Ivan Hurt, May 24 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (14*n-15-3*i^(2*n)+(1-i)*i^(-n)+(1+i)*i^n)/8, where i=sqrt(-1).
E.g.f.: (8 - sin(x) + cos(x) + (7*x - 6)*sinh(x) + (7*x - 9)*cosh(x))/4. - Ilya Gutkovskiy, May 25 2016
Extensions
More terms from Wesley Ivan Hurt, May 24 2016