A047391 Numbers that are congruent to {1, 3, 5} mod 7.
1, 3, 5, 8, 10, 12, 15, 17, 19, 22, 24, 26, 29, 31, 33, 36, 38, 40, 43, 45, 47, 50, 52, 54, 57, 59, 61, 64, 66, 68, 71, 73, 75, 78, 80, 82, 85, 87, 89, 92, 94, 96, 99, 101, 103, 106, 108, 110, 113, 115, 117, 120, 122, 124, 127, 129, 131, 134, 136, 138, 141
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
Crossrefs
Cf. A049347.
Programs
-
Magma
[n: n in [1..122] | n mod 7 in [1, 3, 5]]; // Bruno Berselli, Mar 25 2011
-
Maple
A047391:=n->(21*n-15-3*cos(2*n*Pi/3)+sqrt(3)*sin(2*Pi*n/3))/9: seq(A047391(n), n=1..100); # Wesley Ivan Hurt, Jun 13 2016
-
Mathematica
Select[Range[0, 150], MemberQ[{1, 3, 5}, Mod[#, 7]] &] (* Wesley Ivan Hurt, Jun 13 2016 *) LinearRecurrence[{1, 0, 1, -1}, {1, 3, 5, 8}, 100] (* Vincenzo Librandi, Jun 14 2016 *)
Formula
From Bruno Berselli, Mar 25 2011: (Start)
G.f.: x*(1+2*x+2*x^2+2*x^3)/((1-x)^2*(1+x+x^2)).
a(n) = 7*floor((n-1)/3)+2*(n-1 mod 3)+1.
a(n) = (1/3)*(7*n-5-A049347(n)). (End)
From Wesley Ivan Hurt, Jun 13 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (21*n-15-3*cos(2*n*Pi/3)+sqrt(3)*sin(2*Pi*n/3))/9.
a(3k) = 7k-2, a(3k-1) = 7k-4, a(3k-2) = 7k-6. (End)
a(n) = n - 1 + floor((4n-1)/3). - Wesley Ivan Hurt, Dec 27 2016