cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047391 Numbers that are congruent to {1, 3, 5} mod 7.

Original entry on oeis.org

1, 3, 5, 8, 10, 12, 15, 17, 19, 22, 24, 26, 29, 31, 33, 36, 38, 40, 43, 45, 47, 50, 52, 54, 57, 59, 61, 64, 66, 68, 71, 73, 75, 78, 80, 82, 85, 87, 89, 92, 94, 96, 99, 101, 103, 106, 108, 110, 113, 115, 117, 120, 122, 124, 127, 129, 131, 134, 136, 138, 141
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A049347.

Programs

  • Magma
    [n: n in [1..122] | n mod 7 in [1, 3, 5]]; // Bruno Berselli, Mar 25 2011
  • Maple
    A047391:=n->(21*n-15-3*cos(2*n*Pi/3)+sqrt(3)*sin(2*Pi*n/3))/9: seq(A047391(n), n=1..100); # Wesley Ivan Hurt, Jun 13 2016
  • Mathematica
    Select[Range[0, 150], MemberQ[{1, 3, 5}, Mod[#, 7]] &] (* Wesley Ivan Hurt, Jun 13 2016 *)
    LinearRecurrence[{1, 0, 1, -1}, {1, 3, 5, 8}, 100] (* Vincenzo Librandi, Jun 14 2016 *)

Formula

From Bruno Berselli, Mar 25 2011: (Start)
G.f.: x*(1+2*x+2*x^2+2*x^3)/((1-x)^2*(1+x+x^2)).
a(n) = 7*floor((n-1)/3)+2*(n-1 mod 3)+1.
a(n) = (1/3)*(7*n-5-A049347(n)). (End)
From Wesley Ivan Hurt, Jun 13 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (21*n-15-3*cos(2*n*Pi/3)+sqrt(3)*sin(2*Pi*n/3))/9.
a(3k) = 7k-2, a(3k-1) = 7k-4, a(3k-2) = 7k-6. (End)
a(n) = n - 1 + floor((4n-1)/3). - Wesley Ivan Hurt, Dec 27 2016