A047403 Numbers that are congruent to {0, 2, 3, 6} mod 8.
0, 2, 3, 6, 8, 10, 11, 14, 16, 18, 19, 22, 24, 26, 27, 30, 32, 34, 35, 38, 40, 42, 43, 46, 48, 50, 51, 54, 56, 58, 59, 62, 64, 66, 67, 70, 72, 74, 75, 78, 80, 82, 83, 86, 88, 90, 91, 94, 96, 98, 99, 102, 104, 106, 107, 110, 112, 114, 115, 118, 120, 122, 123, 126, 128
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
Magma
[n : n in [0..150] | n mod 8 in [0, 2, 3, 6]]; // Wesley Ivan Hurt, May 24 2016
-
Maple
A047403:=n->(8*n-9+I^(2*n)+I^(1-n)-I^(1+n))/4: seq(A047403(n), n=1..100); # Wesley Ivan Hurt, May 24 2016
-
Mathematica
Table[(8n-9+I^(2n)+I^(1-n)-I^(1+n))/4, {n, 80}] (* Wesley Ivan Hurt, May 24 2016 *) #+{0,2,3,6}&/@(8*Range[0,20])//Flatten (* or *) LinearRecurrence[{1,0,0,1,-1},{0,2,3,6,8},80] (* Harvey P. Dale, Mar 02 2023 *)
Formula
a(n) = 2*n - ((n mod 4) == 2).
G.f.: x^2*(2+x+3*x^2+2*x^3) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Dec 05 2011
From Wesley Ivan Hurt, May 24 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (8*n-9+i^(2*n)+i^(1-n)-i^(1+n))/4, where i=sqrt(-1).
E.g.f.: (4 + sin(x) + (4*x - 5)*sinh(x) + 4*(x - 1)*cosh(x))/2. - Ilya Gutkovskiy, May 25 2016
Sum_{n>=2} (-1)^n/a(n) = (4-sqrt(2))*log(2)/16 + sqrt(2)*log(2+sqrt(2))/8 - (sqrt(2)-1)*Pi/16. - Amiram Eldar, Dec 21 2021