A047407 Numbers that are congruent to {0, 4, 6} mod 8.
0, 4, 6, 8, 12, 14, 16, 20, 22, 24, 28, 30, 32, 36, 38, 40, 44, 46, 48, 52, 54, 56, 60, 62, 64, 68, 70, 72, 76, 78, 80, 84, 86, 88, 92, 94, 96, 100, 102, 104, 108, 110, 112, 116, 118, 120, 124, 126, 128, 132, 134, 136, 140, 142, 144, 148, 150, 152, 156
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
Programs
-
Magma
[n : n in [0..160] | n mod 8 in [0, 4, 6]]; // Vincenzo Librandi, May 02 2016
-
Maple
A047407:=n->2*(12*n-9-2*sqrt(3)*sin(2*n*Pi/3))/9: seq(A047407(n), n=1..100); # Wesley Ivan Hurt, Jun 10 2016
-
Mathematica
Select[Range[0,200], MemberQ[{0,4,6}, Mod[#,8]]&] (* or *) LinearRecurrence[{1,0,1,-1}, {0,4,6,8}, 70] (* Harvey P. Dale, Apr 20 2016 *)
-
PARI
a(n)=n\3*8+[-2,0,4][n%3+1] \\ Charles R Greathouse IV, May 02 2016
Formula
From R. J. Mathar, Dec 05 2011: (Start)
a(n) = 2*A004772(n).
G.f.: 2*x^2*(2+x+x^2) / ((1+x+x^2)*(x-1)^2). (End)
From Wesley Ivan Hurt, Jun 10 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = 2*(12*n-9-2*sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 8k-2, a(3k-1) = 8k-4, a(3k-2) = 8k-8. (End)
a(n) = 2*(n - 1 + floor((n + 1)/3)). - Wolfdieter Lang, Sep 11 2021
Sum_{n>=2} (-1)^n/a(n) = (2-sqrt(2))*log(2)/16 + sqrt(2)*log(sqrt(2)+2)/8 - (sqrt(2)-1)*Pi/16. - Amiram Eldar, Dec 19 2021