A047408 Numbers that are congruent to {1, 4, 6} mod 8.
1, 4, 6, 9, 12, 14, 17, 20, 22, 25, 28, 30, 33, 36, 38, 41, 44, 46, 49, 52, 54, 57, 60, 62, 65, 68, 70, 73, 76, 78, 81, 84, 86, 89, 92, 94, 97, 100, 102, 105, 108, 110, 113, 116, 118, 121, 124, 126, 129, 132, 134, 137, 140, 142, 145, 148, 150, 153, 156, 158
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
Crossrefs
Cf. A047622.
Programs
-
Magma
[n : n in [0..150] | n mod 8 in [1, 4, 6]]; // Wesley Ivan Hurt, Jun 10 2016
-
Maple
A047408:=n->3*n-floor(n/3)-2; seq(A047408(k), k=1..100); # Wesley Ivan Hurt, Nov 07 2013
-
Mathematica
Table[3n-Floor[n/3]-2, {n, 100}] (* Wesley Ivan Hurt, Nov 07 2013 *)
Formula
G.f.: x*(1+3*x+2*x^2+2*x^3)/((1+x+x^2)*(x-1)^2). - R. J. Mathar, Dec 05 2011
a(n) = 3n - 2 - floor(n/3). - Wesley Ivan Hurt, Nov 07 2013
From Wesley Ivan Hurt, Jun 10 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (24*n-15-3*cos(2*n*Pi/3)-sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 8k-2, a(3k-1) = 8k-4, a(3k-2) = 8k-7. (End)
E.g.f.: 2 + exp(x)*(8*x - 5)/3 - exp(-x/2)*(3*cos(sqrt(3)*x/2) + sqrt(3)*sin(sqrt(3)*x/2))/9. - Stefano Spezia, Mar 30 2023