cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A047622 Numbers that are congruent to {0, 3, 5} mod 8.

Original entry on oeis.org

0, 3, 5, 8, 11, 13, 16, 19, 21, 24, 27, 29, 32, 35, 37, 40, 43, 45, 48, 51, 53, 56, 59, 61, 64, 67, 69, 72, 75, 77, 80, 83, 85, 88, 91, 93, 96, 99, 101, 104, 107, 109, 112, 115, 117, 120, 123, 125, 128, 131, 133, 136, 139, 141, 144, 147, 149, 152, 155, 157
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n : n in [0..150] | n mod 8 in [0, 3, 5]]; // Wesley Ivan Hurt, Jun 13 2016
  • Maple
    seq(floor((8*n-7)/3), n=1..52); # Gary Detlefs, Mar 07 2010
  • Mathematica
    Select[Range[0,150], MemberQ[{0,3,5}, Mod[#,8]]&] (* Harvey P. Dale, Oct 04 2012 *)
    LinearRecurrence[{1, 0, 1, -1}, {0, 3, 5, 8}, 100] (* Vincenzo Librandi, Jun 14 2016 *)

Formula

From R. J. Mathar, Oct 18 2008: (Start)
G.f.: x^2*(3+2*x+3*x^2)/((1-x)^2*(1+x+x^2)).
a(n) = A008576(n-1), for n>1. (End)
a(n) = floor((8n-7)/3). - Gary Detlefs, Mar 07 2010
From Wesley Ivan Hurt, Jun 13 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (24*n-24-3*cos(2*n*Pi/3)-sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 8k-3, a(3k-1) = 8k-5, a(3k-2) = 8k-8. (End)
a(n) = A047408(n) - 1. - Lorenzo Sauras Altuzarra, Jan 31 2023
E.g.f.: 3 + (8/3)*exp(x)*(x - 1) - exp(-x/2)*(3*cos(sqrt(3)*x/2) + sqrt(3)*sin(sqrt(3)*x/2))/9. - Stefano Spezia, Mar 30 2023

A047480 Numbers that are congruent to {2, 5, 7} mod 8.

Original entry on oeis.org

2, 5, 7, 10, 13, 15, 18, 21, 23, 26, 29, 31, 34, 37, 39, 42, 45, 47, 50, 53, 55, 58, 61, 63, 66, 69, 71, 74, 77, 79, 82, 85, 87, 90, 93, 95, 98, 101, 103, 106, 109, 111, 114, 117, 119, 122, 125, 127, 130, 133, 135, 138, 141, 143, 146, 149, 151, 154, 157, 159
Offset: 1

Views

Author

Keywords

Crossrefs

Different from A038127.
Cf. A047408.

Programs

  • Magma
    [n : n in [0..150] | n mod 8 in [2, 5, 7]]; // Wesley Ivan Hurt, Jun 10 2016
  • Maple
    A047480:=n->(24*n-6-3*cos(2*n*Pi/3)-sqrt(3)*sin(2*n*Pi/3))/9: seq(A047480(n), n=1..100); # Wesley Ivan Hurt, Jun 10 2016
  • Mathematica
    Select[Range[0, 150], MemberQ[{2, 5, 7}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jun 10 2016 *)
    Flatten[Table[8 n + {2, 5, 7}, {n, 0, 150}]] (* Vincenzo Librandi, Jun 12 2016 *)
    LinearRecurrence[{1,0,1,-1},{2,5,7,10},100] (* Harvey P. Dale, Jun 18 2018 *)

Formula

G.f.: x*(1+x)*(x^2+x+2) / ((1+x+x^2)*(x-1)^2). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, Jun 10 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (24*n-6-3*cos(2*n*Pi/3)-sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 8k-1, a(3k-1) = 8k-3, a(3k-2) = 8k-6. (End)
a(n) = A047408(n) + 1. - Lorenzo Sauras Altuzarra, Jan 31 2023
Showing 1-2 of 2 results.