cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A234902 a(n)*Pi is the total length of irregular spiral (center points: 1, 2, 3) after n rotations.

Original entry on oeis.org

2, 9, 13, 17, 24, 26, 33, 37, 41, 48, 50, 57, 61, 65, 72, 74, 81, 85, 89, 96, 98, 105, 109, 113, 120, 122, 129, 133, 137, 144, 146, 153, 157, 161, 168, 170, 177, 181, 185, 192, 194, 201, 205, 209, 216, 218, 225, 229, 233, 240, 242, 249, 253, 257
Offset: 1

Views

Author

Kival Ngaokrajang, Jan 01 2014

Keywords

Comments

Let points 1, 2 & 3 be placed on a straight line at intervals of 1 unit. At point 1, make a half unit circle; then, at point 2, make another half circle and maintain continuity of circumferences. Continue using this procedure at points 3, 1, 2 and so on. The form of the spiral is a non-expanded loop.
The sequence will be A047622 if the second radius = 2; if the second radius = 0, the sequence is a(n).
See illustration in links.

Crossrefs

Cf. A014105*Pi (total spiral length, 2 inline center points).

Programs

  • Mathematica
    LinearRecurrence[{1,0,0,0,1,-1},{2,9,13,17,24,26},60] (* Harvey P. Dale, May 21 2021 *)

Formula

G.f.: x*(7*x^4 + 4*x^3 + 4*x^2 + 7*x + 2)/((1-x)*(1-x^5)). - Ralf Stephan, Jan 20 2014

A047408 Numbers that are congruent to {1, 4, 6} mod 8.

Original entry on oeis.org

1, 4, 6, 9, 12, 14, 17, 20, 22, 25, 28, 30, 33, 36, 38, 41, 44, 46, 49, 52, 54, 57, 60, 62, 65, 68, 70, 73, 76, 78, 81, 84, 86, 89, 92, 94, 97, 100, 102, 105, 108, 110, 113, 116, 118, 121, 124, 126, 129, 132, 134, 137, 140, 142, 145, 148, 150, 153, 156, 158
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A047622.

Programs

Formula

G.f.: x*(1+3*x+2*x^2+2*x^3)/((1+x+x^2)*(x-1)^2). - R. J. Mathar, Dec 05 2011
a(n) = 3n - 2 - floor(n/3). - Wesley Ivan Hurt, Nov 07 2013
From Wesley Ivan Hurt, Jun 10 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (24*n-15-3*cos(2*n*Pi/3)-sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 8k-2, a(3k-1) = 8k-4, a(3k-2) = 8k-7. (End)
E.g.f.: 2 + exp(x)*(8*x - 5)/3 - exp(-x/2)*(3*cos(sqrt(3)*x/2) + sqrt(3)*sin(sqrt(3)*x/2))/9. - Stefano Spezia, Mar 30 2023

A236535 a(n)*Pi is the total length of irregular spiral (center points: 2, 3, 1; pattern 1) after n rotations.

Original entry on oeis.org

2, 5, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 34, 37, 40, 42, 45, 48, 50, 53, 56, 58, 61, 64, 66, 69, 72, 74, 77, 80, 82, 85, 88, 90, 93, 96, 98, 101, 104, 106, 109, 112, 114, 117, 120, 122, 125, 128, 130, 133, 136, 138, 141, 144, 146, 149, 152, 154, 157, 160, 162, 165, 168, 170, 173, 176, 178, 181, 184, 186, 189
Offset: 1

Views

Author

Kival Ngaokrajang, Jan 28 2014

Keywords

Comments

Let points 2, 3, & 1 be placed on a straight line at intervals of 1 unit. At point 1 make a half unit circle then at point 2 make another half circle; by selecting radius point on the left hand side of point 1 (pattern 1); at point 3 make another half circle and maintain continuity of circumferences. Continue using this procedure at point 1, 2, 3, ... and so on.
Conjecture: All forms of 3 center points are non-expanded loops.
There are other sets of center points that give the same sequence, e.g.: [2,3,1,4]; [3,2,4,1]; [3,2,4,1,5]; [2,3,1,4,5,7,6]; [2,3,1,7,4,6,5]; [3,4,2,5,1,6,7]; [4,3,5,6,2,7,1]; [4,5,3,2,1,6,7]; [5,4,6,3,2,7,1].
Also, there are some similar patterns that give difference sequences, e.g.:
A047622: [1,2,7,3,4,6,5]; [1,2,7,6,3,5,4]...
A047399: [1,2,7,3,6,4,5]; [1,2,7,6,5,3,4]...
A047395: [2,3,1,4 7,5,6]; [2,3,1,7,6,4,5]...
A047464: [4,5,3,6,2,7,1]; [1,8,2,7,3,6,4,5];
[9,1,8,2,7,3,6,4,5].
See illustration in links.
Appears to be basically a duplicate of A047618. - R. J. Mathar, Feb 03 2014

Crossrefs

Cf. A014105 (2 center points); A234902, A234903, A234904 (3 center points); A235088, A235089 (4 center points); A236326, A236327 (5 center points).

Formula

Conjecture from Colin Barker, Jul 12 2014: (Start)
a(n) = a(n-1)+a(n-3)-a(n-4).
G.f.: x*(3*x^2+3*x+2) / ((x-1)^2*(x^2+x+1)). (End)

A308399 Expansion of 1 / Sum_{k=-oo..oo} (-x)^(k*(4*k + 1)).

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 1, 0, 2, 1, 1, 3, 1, 3, 3, 2, 6, 3, 4, 8, 4, 9, 9, 6, 15, 10, 12, 20, 12, 22, 23, 18, 35, 26, 30, 46, 32, 51, 54, 45, 76, 62, 71, 99, 76, 111, 117, 104, 160, 136, 154, 205, 167, 230, 244, 223, 319, 286, 319, 406, 349, 456, 484, 458, 619, 570, 632, 779, 695
Offset: 0

Views

Author

Ilya Gutkovskiy, May 24 2019

Keywords

Comments

Number of partitions of n into parts congruent to {0, 3, 5} mod 8.
Convolution inverse of A244465.

Examples

			For n=23 the a(23)=6 solutions are 3+3+3+3+3+3+5, 3+3+3+3+3+8, 3+3+3+3+11, 3+5+5+5+5, 5+5+5+8, and 5+5+13.
		

Crossrefs

Programs

  • Mathematica
    nmax = 68; CoefficientList[Series[1/Sum[(-x)^(k (4 k + 1)), {k, -nmax, nmax}], {x, 0, nmax}], x]
    nmax = 68; CoefficientList[Series[Product[1/((1 - x^(8 k - 5)) (1 - x^(8 k - 3)) (1 - x^(8 k))), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 68; CoefficientList[Series[Sum[PartitionsP[k] (-x)^k, {k, 0, nmax}]/Sum[PartitionsQ[2 k] (-x)^k, {k, 0, nmax}], {x, 0, nmax}], x]

Formula

G.f.: 1 / Sum_{k>=0} (-x)^A074378(k).
G.f.: Product_{k>=1} 1 / ((1 - x^(8*k - 5)) * (1 - x^(8*k - 3)) * (1 - x^(8*k))).
G.f.: ( Sum_{k>=0} A000041(k)*(-x)^k ) / ( Sum_{k>=0} A000009(2*k)*(-x)^k ).
a(n) ~ sqrt(sqrt(2) - 1) * exp(sqrt(n)*Pi/2) / (2^(9/4)*n). - Vaclav Kotesovec, May 25 2019
a(n) = a(n-3) + a(n-5) - a(n-14) - a(n-18) + + - - (with a(0)=1 and a(n) = 0 for negative n), where 3, 5, 14, 18, ... is the sequence A074378. - Ludovic Schwob, Aug 04 2021

A063285 Dimension of the space of weight n cuspidal newforms for Gamma_1( 12 ).

Original entry on oeis.org

-1, 0, 3, 5, 5, 8, 8, 14, 11, 17, 13, 22, 16, 26, 19, 31, 21, 34, 24, 40, 27, 43, 29, 48, 32, 52, 35, 57, 37, 60, 40, 66, 43, 69, 45, 74, 48, 78, 51, 83, 53, 86, 56, 92, 59, 95, 61, 100, 64, 104, 67, 109, 69, 112, 72, 118, 75, 121, 77, 126, 80, 130
Offset: 2

Views

Author

N. J. A. Sloane, Jul 14 2001

Keywords

Crossrefs

Cf. A047622 (bisection).

Formula

g.f.: -x^2*(x^8-5*x^7+x^6-5*x^5-2*x^4-x^3-3*x^2-x+1) / ((x-1)^2*(x+1)^2*(x^2-x+1)*(x^2+1)). - Colin Barker, Feb 24 2015
Showing 1-5 of 5 results.