cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A281333 a(n) = 1 + floor(n/2) + floor(n^2/3).

Original entry on oeis.org

1, 1, 3, 5, 8, 11, 16, 20, 26, 32, 39, 46, 55, 63, 73, 83, 94, 105, 118, 130, 144, 158, 173, 188, 205, 221, 239, 257, 276, 295, 316, 336, 358, 380, 403, 426, 451, 475, 501, 527, 554, 581, 610, 638, 668, 698, 729, 760, 793, 825, 859, 893, 928, 963, 1000, 1036, 1074, 1112, 1151, 1190
Offset: 0

Views

Author

Bruno Berselli, Jan 20 2017

Keywords

Crossrefs

Subsequences: A033577, A244805 (numbers of the form 1 + k/2 + k^2/3), A212978 (second bisection).
Cf. A236771: n + floor(n/2) + floor(n^2/3).
Cf. A008619: 1 + floor(n/2); A087483: 1 + floor(n^2/3).

Programs

  • Magma
    [1 + n div 2 + n^2 div 3: n in [0..60]];
  • Maple
    A281333:=n->1 + floor(n/2) + floor(n^2/3): seq(A281333(n), n=0..100); # Wesley Ivan Hurt, Feb 09 2017
  • Mathematica
    Table[1 + Floor[n/2] + Floor[n^2/3], {n, 0, 60}]
    LinearRecurrence[{1,1,0,-1,-1,1},{1,1,3,5,8,11},80] (* Harvey P. Dale, Sep 29 2024 *)
  • Maxima
    makelist(1+floor(n/2)+floor(n^2/3), n, 0, 60);
    
  • PARI
    vector(60, n, n--; 1+floor(n/2)+floor(n^2/3))
    
  • Python
    [1+int(n/2)+int(n**2/3) for n in range(60)]
    
  • Sage
    [1+floor(n/2)+floor(n^2/3) for n in range(60)]
    

Formula

G.f.: (1 + x^2 + x^3 + x^4)/((1 + x)*(1 + x + x^2)*(1 - x)^3).
a(n) = a(n-1) + a(n-2) - a(n-4) - a(n-5) + a(n-6).
a(n) = 1 + floor(n/2 + n^2/3).
a(n) = (12*n^2 + 18*n + 4*(-1)^(2*n/3) + 4*(-1)^(-2*n/3) + 9*(-1)^n + 19)/36.
a(n) - n = a(-n).
a(6*k+r) = 12*k^2 + (4*r+3)*k + a(r), where 0 <= r <= 5. Particular cases:
a(6*k) = A244805(k+1), a(6*k+1) = A033577(k).
a(n+2) - a(n) = A004773(n+2).
a(n+3) - a(n) = A014601(n+2).
a(n+4) - a(n) = A047480(n+3).
a(n) - a(-n+3) = 2*A001651(n-1).
a(n) + a(-n+3) = 2*A097922(n-1).
a(n) = 1 + A004526(n) + A000212(n) = A008619(n) + A000212(n). - Omar E. Pol, Dec 23 2020

A038127 A Beatty sequence: a(n) = floor(n*2^sqrt(2)).

Original entry on oeis.org

0, 2, 5, 7, 10, 13, 15, 18, 21, 23, 26, 29, 31, 34, 37, 39, 42, 45, 47, 50, 53, 55, 58, 61, 63, 66, 69, 71, 74, 77, 79, 82, 85, 87, 90, 93, 95, 98, 101, 103, 106, 109, 111, 114, 117, 119, 122, 125, 127, 130, 133, 135, 138, 141, 143, 146, 149, 151
Offset: 0

Views

Author

Keywords

Comments

2^sqrt(2) is the Hilbert number (a.k.a. Gelfond-Schneider constant) (A007507).
Of course this is different from A047480.

Programs

  • Magma
    [Floor(n*2^(Sqrt(2))): n in [1..50]]; // G. C. Greubel, Mar 27 2018
  • Mathematica
    Floor[2^Sqrt[2] Range[0,60]] (* Harvey P. Dale, Dec 03 2012 *)
  • PARI
    for(n=1,50, print1(floor(n*2^(sqrt(2))), ", ")) \\ G. C. Greubel, Mar 27 2018
    
Showing 1-2 of 2 results.