cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047411 Numbers that are congruent to {1, 2, 4, 6} mod 8.

Original entry on oeis.org

1, 2, 4, 6, 9, 10, 12, 14, 17, 18, 20, 22, 25, 26, 28, 30, 33, 34, 36, 38, 41, 42, 44, 46, 49, 50, 52, 54, 57, 58, 60, 62, 65, 66, 68, 70, 73, 74, 76, 78, 81, 82, 84, 86, 89, 90, 92, 94, 97, 98, 100, 102, 105, 106, 108, 110, 113, 114, 116, 118, 121, 122, 124, 126, 129, 130
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n : n in [0..150] | n mod 8 in [1, 2, 4, 6]]; // Wesley Ivan Hurt, May 22 2016
  • Maple
    A047411 := proc(n) if n <= 4 then op(n,[1,2,4,6]); else procname(n-4)+8; end if; end proc: seq(A047411(n), n=1..99); # R. J. Mathar, Feb 11 2010
  • Mathematica
    Table[(8n-7-I^(2n)+I^(1-n)-I^(1+n))/4, {n, 80}] (* Wesley Ivan Hurt, May 22 2016 *)
    LinearRecurrence[{1,0,0,1,-1}, {1,2,4,6,9}, 50] (* G. C. Greubel, May 23 2016 *)

Formula

From R. J. Mathar, Mar 10 2008: (Start)
a(n) = a(n-4)+8.
O.g.f.: 2/(-1+x)^2+1/(2*(x^2+1))+7/(4*(-1+x))+1/(4*(x+1)). (End)
a(n) = a(n-1) + a(n-4) - a(n-5) for n > 5. - R. J. Mathar, Feb 11 2010
From Wesley Ivan Hurt, May 22 2016: (Start)
a(n) = (8*n-7-i^(2*n)+i^(1-n)-i^(1+n))/4 where i=sqrt(-1).
a(2*n+2) = A016825(n) n>0, a(2*n-1) = A047461(n). (End)
E.g.f.: (4 + sin(x) + (4*x - 3)*sinh(x) + 4*(x - 1)*cosh(x))/2. - Ilya Gutkovskiy, May 23 2016
a(n) = (8*n-7-cos(n*Pi)+2*sin(n*Pi/2))/4. - Wesley Ivan Hurt, Oct 05 2017
Sum_{n>=1} (-1)^(n+1)/a(n) = (sqrt(2)+1)*Pi/16 - sqrt(2)*log(3-2*sqrt(2))/16. - Amiram Eldar, Dec 23 2021

Extensions

Extended by R. J. Mathar, Feb 11 2010