A047414 Numbers that are congruent to {0, 3, 4, 6} mod 8.
0, 3, 4, 6, 8, 11, 12, 14, 16, 19, 20, 22, 24, 27, 28, 30, 32, 35, 36, 38, 40, 43, 44, 46, 48, 51, 52, 54, 56, 59, 60, 62, 64, 67, 68, 70, 72, 75, 76, 78, 80, 83, 84, 86, 88, 91, 92, 94, 96, 99, 100, 102, 104, 107, 108, 110, 112, 115, 116, 118, 120, 123, 124
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
Magma
[n : n in [0..150] | n mod 8 in [0, 3, 4, 6]]; // Wesley Ivan Hurt, May 24 2016
-
Maple
A047414:=n->(8*n-7+I^(2*n)-I^(-n)-I^n)/4: seq(A047414(n), n=1..100); # Wesley Ivan Hurt, May 24 2016
-
Mathematica
Select[Range[0,200], MemberQ[{0,3,4,6}, Mod[#,8]]&] (* Harvey P. Dale, May 10 2013 *)
Formula
G.f.: x^2*(3+x+2*x^2+2*x^3) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Dec 05 2011
From Wesley Ivan Hurt, May 24 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (8*n-7+i^(2*n)-i^(-n)-i^n)/4 where i=sqrt(-1).
E.g.f.: (4 - cos(x) + 4*(x - 1)*sinh(x) + (4*x - 3)*cosh(x))/2. - Ilya Gutkovskiy, May 25 2016
Sum_{n>=2} (-1)^n/a(n) = 5*log(2)/8 + sqrt(2)*log(3-2*sqrt(2))/16 - (2-sqrt(2))*Pi/16. - Amiram Eldar, Dec 21 2021