A047417 Numbers that are congruent to {2, 3, 4, 6} mod 8.
2, 3, 4, 6, 10, 11, 12, 14, 18, 19, 20, 22, 26, 27, 28, 30, 34, 35, 36, 38, 42, 43, 44, 46, 50, 51, 52, 54, 58, 59, 60, 62, 66, 67, 68, 70, 74, 75, 76, 78, 82, 83, 84, 86, 90, 91, 92, 94, 98, 99, 100, 102, 106, 107, 108, 110, 114, 115, 116, 118, 122, 123
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
Magma
[n : n in [0..150] | n mod 8 in [2, 3, 4, 6]]; // Wesley Ivan Hurt, May 25 2016
-
Maple
A047417:=n->(8*n-5-I^(2*n)-(1-2*I)*I^(-n)-(1+2*I)*I^n)/4: seq(A047417(n), n=1..100); # Wesley Ivan Hurt, May 25 2016
-
Mathematica
Flatten[#+{2,3,4,6}&/@(8Range[0,20])] (* Harvey P. Dale, Dec 20 2012 *)
Formula
G.f.: x*(2+x+x^2+2*x^3+2*x^4) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Dec 05 2011
From Wesley Ivan Hurt, May 25 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (8*n-5-i^(2*n)-(1-2*i)*i^(-n)-(1+2*i)*i^n)/4 with i=sqrt(-1).
E.g.f.: 2 + sin(x) - cos(x)/2 + (2*x - 1)*sinh(x) + (2*x - 3/2)*cosh(x). - Ilya Gutkovskiy, May 25 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = (3-sqrt(2))*Pi/16 - (sqrt(2)+4)*log(2)/16 + sqrt(2)*log(sqrt(2)+2)/8. - Amiram Eldar, Dec 25 2021