A047424 Numbers that are congruent to {0, 2, 3, 4, 5, 6} mod 8.
0, 2, 3, 4, 5, 6, 8, 10, 11, 12, 13, 14, 16, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 30, 32, 34, 35, 36, 37, 38, 40, 42, 43, 44, 45, 46, 48, 50, 51, 52, 53, 54, 56, 58, 59, 60, 61, 62, 64, 66, 67, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 82, 83, 84, 85, 86
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (2,-2,2,-2,2,-1).
Programs
-
Magma
[n : n in [0..100] | n mod 8 in [0] cat [2..6]]; // Wesley Ivan Hurt, Jun 15 2016
-
Maple
A047424:=n->(12*n-12-sqrt(3)*cos((1-4*n)*Pi/6)-3*sqrt(3)*cos((1+2*n)*Pi/6))/9: seq(A047424(n), n=1..100); # Wesley Ivan Hurt, Jun 15 2016
-
Mathematica
Select[Range[0,100], MemberQ[{0,2,3,4,5,6}, Mod[#,8]]&] (* Harvey P. Dale, Mar 21 2011 *)
-
PARI
my(x='x+O('x^50)); concat([0], Vec(x^2*(2 -x +2*x^2 -x^3 +2*x^4 )/((1 + x+x^2)*(x^2-x+1)*(x-1)^2))) \\ G. C. Greubel, Oct 29 2017
Formula
G.f.: x^2*(2-x+2*x^2-x^3+2*x^4) / ( (1+x+x^2)*(x^2-x+1)*(x-1)^2 ). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, Jun 15 2016: (Start)
a(n) = 2*a(n-1)-2*a(n-2)+2*a(n-3)-2*a(n-4)+2*a(n-5)-a(n-6) for n>6.
a(n) = (12*n-12-sqrt(3)*cos((1-4*n)*Pi/6)-3*sqrt(3)*cos((1+2*n)*Pi/6))/9.
a(6k) = 8k-2, a(6k-1) = 8k-3, a(6k-2) = 8k-4, a(6k-3) = 8k-5, a(6k-4) = 8k-6, a(6k-5) = 8k-8. (End)
Sum_{n>=2} (-1)^n/a(n) = sqrt(2)*log(3+2*sqrt(2))/8. - Amiram Eldar, Dec 27 2021