cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047430 Numbers that are congruent to {0, 4, 5, 6} mod 8.

Original entry on oeis.org

0, 4, 5, 6, 8, 12, 13, 14, 16, 20, 21, 22, 24, 28, 29, 30, 32, 36, 37, 38, 40, 44, 45, 46, 48, 52, 53, 54, 56, 60, 61, 62, 64, 68, 69, 70, 72, 76, 77, 78, 80, 84, 85, 86, 88, 92, 93, 94, 96, 100, 101, 102, 104, 108, 109, 110, 112, 116, 117, 118, 120, 124
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n : n in [0..150] | n mod 8 in [0, 4, 5, 6]]; // Wesley Ivan Hurt, May 25 2016
  • Maple
    A047430:=n->(8*n-5+I^(2*n)-(2+I)*I^(-n)-(2-I)*I^n)/4: seq(A047430(n), n=1..100); # Wesley Ivan Hurt, May 25 2016
  • Mathematica
    Table[(8n-5+I^(2n)-(2+I)*I^(-n)-(2-I)*I^n)/4, {n, 80}] (* Wesley Ivan Hurt, May 25 2016 *)
    Select[Range[0, 124], MemberQ[{0, 4, 5, 6}, Mod[#, 8]] &] (* Michael De Vlieger, May 25 2016 *)
    LinearRecurrence[{1,0,0,1,-1},{0,4,5,6,8},100] (* Harvey P. Dale, Aug 05 2023 *)

Formula

G.f.: x^2*(4+x+x^2+2*x^3) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Dec 07 2011
From Wesley Ivan Hurt, May 25 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (8*n-5+i^(2*n)-(2+i)*i^(-n)-(2-i)*i^n)/4 where i=sqrt(-1).
a(2k) = A047406(k), a(2k-1) = A047615(k). (End)
E.g.f.: (4 - sin(x) - 2*cos(x) + (4*x - 3)*sinh(x) + (4*x - 2)*cosh(x))/2. - Ilya Gutkovskiy, May 25 2016
Sum_{n>=2} (-1)^n/a(n) = sqrt(2)*log(2+sqrt(2))/8 - (2-sqrt(2))*(Pi-log(2))/16. - Amiram Eldar, Dec 23 2021