A047444 Numbers that are congruent to {0, 3, 5, 6} mod 8.
0, 3, 5, 6, 8, 11, 13, 14, 16, 19, 21, 22, 24, 27, 29, 30, 32, 35, 37, 38, 40, 43, 45, 46, 48, 51, 53, 54, 56, 59, 61, 62, 64, 67, 69, 70, 72, 75, 77, 78, 80, 83, 85, 86, 88, 91, 93, 94, 96, 99, 101, 102, 104, 107, 109, 110, 112, 115, 117, 118, 120, 123, 125
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (2,-2,2,-1).
Programs
-
Magma
[n : n in [0..150] | n mod 8 in [0, 3, 5, 6]]; // Wesley Ivan Hurt, May 26 2016
-
Maple
A047444:=n->(1+I)*(4*n-4*n*I+3*I-3-I^(-n)+I^(1+n))/4: seq(A047444(n), n=1..100); # Wesley Ivan Hurt, May 26 2016
-
Mathematica
Table[(1+I)*(4n-4*n*I+3*I-3-I^(-n)+I^(1+n))/4, {n, 80}] (* Wesley Ivan Hurt, May 26 2016 *) LinearRecurrence[{2,-2,2,-1},{0,3,5,6},70] (* Harvey P. Dale, Aug 26 2019 *)
Formula
G.f.: x^2*(3-x+2*x^2) / ( (x^2+1)*(x-1)^2 ). - R. J. Mathar, Dec 07 2011
From Wesley Ivan Hurt, May 26 2016: (Start)
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4) for n>4.
a(n) = (1+i)*(4*n-4*n*i+3*i-3-i^(-n)+i^(1+n))/4 where i=sqrt(-1).
E.g.f.: (4 - sin(x) - cos(x) + (4*x - 3)*exp(x))/2. - Ilya Gutkovskiy, May 27 2016
Sum_{n>=2} (-1)^n/a(n) = 3*log(2)/8 - (3-2*sqrt(2))*Pi/16. - Amiram Eldar, Dec 21 2021