A047452 Numbers that are congruent to {1, 6} mod 8.
1, 6, 9, 14, 17, 22, 25, 30, 33, 38, 41, 46, 49, 54, 57, 62, 65, 70, 73, 78, 81, 86, 89, 94, 97, 102, 105, 110, 113, 118, 121, 126, 129, 134, 137, 142, 145, 150, 153, 158, 161, 166, 169, 174, 177, 182, 185, 190
Offset: 1
Links
- Muniru A Asiru, Table of n, a(n) for n = 1..5000
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Programs
-
GAP
Filtered([0..250], n->n mod 8=1 or n mod 8=6); # Muniru A Asiru, Jul 24 2018
-
Maple
seq(coeff(series(factorial(n)*((4+exp(-x)+(8*x-5)*exp(x))/2), x,n+1),x,n),n=1..60); # Muniru A Asiru, Jul 24 2018
-
Mathematica
Table[(8 n - 5 + (-1)^n)/2, {n, 1, 100}] (* Franck Maminirina Ramaharo, Jul 23 2018 *) CoefficientList[ Series[(2x^2 + 5x + 1)/((x - 1)^2 (x + 1)), {x, 0, 50}], x] (* or *) LinearRecurrence[{1, 1, -1}, {1, 6, 9}, 51] (* Robert G. Wilson v, Jul 24 2018 *)
-
Maxima
makelist((8*n - 5 + (-1)^n)/2, n, 1, 100); /* Franck Maminirina Ramaharo, Jul 23 2018 */
-
Python
def A047452(n): return (n<<2)-2-(n&1) # Chai Wah Wu, Mar 30 2024
Formula
G.f.: x*(1+5*x+2*x^2) / ( (1+x)*(x-1)^2 ). - R. J. Mathar, Dec 07 2011
E.g.f.: (4 + exp(-x) + (8*x - 5)*exp(x))/2. - Ilya Gutkovskiy, May 25 2016
a(n) = A047615(n) + 1. - Franck Maminirina Ramaharo, Jul 23 2018
Sum_{n>=1} (-1)^(n+1)/a(n) = (sqrt(2)+2)*Pi/16 + log(2)/8 + sqrt(2)*log(sqrt(2)+1)/8. - Amiram Eldar, Dec 11 2021
Comments