A047456 Numbers that are congruent to {0, 2, 3, 4} mod 8.
0, 2, 3, 4, 8, 10, 11, 12, 16, 18, 19, 20, 24, 26, 27, 28, 32, 34, 35, 36, 40, 42, 43, 44, 48, 50, 51, 52, 56, 58, 59, 60, 64, 66, 67, 68, 72, 74, 75, 76, 80, 82, 83, 84, 88, 90, 91, 92, 96, 98, 99, 100, 104, 106, 107, 108, 112, 114, 115, 116, 120, 122, 123
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
Magma
I:=[0, 2, 3, 4, 8]; [n le 5 select I[n] else Self(n-1)+Self(n-4)-Self(n-5): n in [1..70]]; // Vincenzo Librandi, May 16 2012
-
Maple
A047456:=n->(-11-(-1)^n-(2-I)*(-I)^n-(2+I)*I^n+8*n)/4: seq(A047456(n), n=1..100); # Wesley Ivan Hurt, May 31 2016
-
Mathematica
Select[Range[0,300], MemberQ[{0,2,3,4}, Mod[#,8]]&] (* Vincenzo Librandi, May 16 2012 *)
Formula
G.f.: x^2*(2+x+x^2+4*x^3)/((1-x)^2*(1+x)*(1+x^2)). - Colin Barker, May 13 2012
a(n) = (-11-(-1)^n-(2-i)*(-i)^n-(2+i)*i^n+8*n)/4 where i=sqrt(-1). - Colin Barker, May 14 2012
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5. - Vincenzo Librandi, May 16 2012
E.g.f.: (8 + sin(x) - 2*cos(x) + (4*x - 5)*sinh(x) + (4*x - 6)*cosh(x))/2. - Ilya Gutkovskiy, May 31 2016
Sum_{n>=2} (-1)^n/a(n) = (2-sqrt(2))*Pi/16 + log(2)/8 + sqrt(2)*log(sqrt(2)+1)/8. - Amiram Eldar, Dec 21 2021