cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047458 Numbers that are congruent to {0, 3, 4} mod 8.

Original entry on oeis.org

0, 3, 4, 8, 11, 12, 16, 19, 20, 24, 27, 28, 32, 35, 36, 40, 43, 44, 48, 51, 52, 56, 59, 60, 64, 67, 68, 72, 75, 76, 80, 83, 84, 88, 91, 92, 96, 99, 100, 104, 107, 108, 112, 115, 116, 120, 123, 124, 128, 131, 132, 136, 139, 140, 144, 147, 148, 152, 155, 156
Offset: 1

Views

Author

Keywords

Crossrefs

Union of A008586 and A017101. - Michel Marcus, Jun 01 2017

Programs

  • Magma
    [n : n in [0..150] | n mod 8 in [0, 3, 4]]; // Wesley Ivan Hurt, Jun 09 2016
  • Maple
    A047458:=n->8*n/3-3-cos(2*n*Pi/3)-sin(2*n*Pi/3)/(3*sqrt(3)): seq(A047458(n), n=1..100); # Wesley Ivan Hurt, Jun 09 2016
  • Mathematica
    Select[Range[0, 150], MemberQ[{0, 3, 4}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jun 09 2016 *)
    LinearRecurrence[{1,0,1,-1},{0,3,4,8},90] (* Harvey P. Dale, May 31 2017 *)

Formula

G.f.: x^2*(3+x+4*x^2)/((1-x)^2*(1+x+x^2)). [Colin Barker, May 13 2012]
From Wesley Ivan Hurt, Jun 09 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = 8*n/3-3-cos(2*n*Pi/3)-sin(2*n*Pi/3)/(3*sqrt(3)).
a(3k) = 8k-4, a(3k-1) = 8k-5, a(3k-2) = 8k-8. (End)