A047458 Numbers that are congruent to {0, 3, 4} mod 8.
0, 3, 4, 8, 11, 12, 16, 19, 20, 24, 27, 28, 32, 35, 36, 40, 43, 44, 48, 51, 52, 56, 59, 60, 64, 67, 68, 72, 75, 76, 80, 83, 84, 88, 91, 92, 96, 99, 100, 104, 107, 108, 112, 115, 116, 120, 123, 124, 128, 131, 132, 136, 139, 140, 144, 147, 148, 152, 155, 156
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
Crossrefs
Programs
-
Magma
[n : n in [0..150] | n mod 8 in [0, 3, 4]]; // Wesley Ivan Hurt, Jun 09 2016
-
Maple
A047458:=n->8*n/3-3-cos(2*n*Pi/3)-sin(2*n*Pi/3)/(3*sqrt(3)): seq(A047458(n), n=1..100); # Wesley Ivan Hurt, Jun 09 2016
-
Mathematica
Select[Range[0, 150], MemberQ[{0, 3, 4}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jun 09 2016 *) LinearRecurrence[{1,0,1,-1},{0,3,4,8},90] (* Harvey P. Dale, May 31 2017 *)
Formula
G.f.: x^2*(3+x+4*x^2)/((1-x)^2*(1+x+x^2)). [Colin Barker, May 13 2012]
From Wesley Ivan Hurt, Jun 09 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = 8*n/3-3-cos(2*n*Pi/3)-sin(2*n*Pi/3)/(3*sqrt(3)).
a(3k) = 8k-4, a(3k-1) = 8k-5, a(3k-2) = 8k-8. (End)