cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047466 Numbers that are congruent to {0, 1, 2, 4} mod 8.

Original entry on oeis.org

0, 1, 2, 4, 8, 9, 10, 12, 16, 17, 18, 20, 24, 25, 26, 28, 32, 33, 34, 36, 40, 41, 42, 44, 48, 49, 50, 52, 56, 57, 58, 60, 64, 65, 66, 68, 72, 73, 74, 76, 80, 81, 82, 84, 88, 89, 90, 92, 96, 97, 98, 100, 104, 105, 106, 108, 112, 113, 114, 116, 120, 121, 122
Offset: 1

Views

Author

Keywords

Crossrefs

Essentially the same as A003485.

Programs

  • Magma
    [n: n in [0..120] | n mod 8 in [0,1,2,4]];
    
  • Maple
    A047466:=n->2*n-4+(3-I^(2*n))*(1-I^(n*(n+1)))/4: seq(A047466(n), n=1..100); # Wesley Ivan Hurt, Jun 01 2016
  • Mathematica
    Select[Range[0,120], MemberQ[{0, 1, 2, 4}, Mod[#, 8]] &] (* or *) LinearRecurrence[{1, 0, 0, 1, -1}, {0, 1, 2, 4, 8}, 60] (* Bruno Berselli, Jul 18 2012 *)
  • Maxima
    makelist(2*n-4+(3-(-1)^n)*(1-%i^(n*(n+1)))/4,n,1,60);
    
  • PARI
    concat(0, Vec((1+x+2*x^2+4*x^3)/((1+x)*(1+x^2)*(1-x)^2)+O(x^60))) (End)

Formula

G.f.: x^2*(1+x+2*x^2+4*x^3) / ( (1+x)*(1+x^2)*(1-x)^2 ). - R. J. Mathar, Oct 08 2011
a(n) = 2*n-4+(3-(-1)^n)*(1-i^(n*(n+1)))/4, where i=sqrt(-1). - Bruno Berselli, Jul 18 2012
From Wesley Ivan Hurt, Jun 01 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(2k) = A047461(k), a(2k-1) = A047467(k). (End)
Sum_{n>=2} (-1)^n/a(n) = (1+2*sqrt(2))*Pi/32 + (3+sqrt(2))*log(2)/16 - sqrt(2)*log(2-sqrt(2))/8. - Amiram Eldar, Dec 20 2021