cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A003485 Hurwitz-Radon function at powers of 2.

Original entry on oeis.org

1, 2, 4, 8, 9, 10, 12, 16, 17, 18, 20, 24, 25, 26, 28, 32, 33, 34, 36, 40, 41, 42, 44, 48, 49, 50, 52, 56, 57, 58, 60, 64, 65, 66, 68, 72, 73, 74, 76, 80, 81, 82, 84, 88, 89, 90, 92, 96, 97, 98, 100, 104, 105, 106, 108, 112, 113, 114, 116, 120, 121, 122, 124
Offset: 0

Views

Author

Keywords

Comments

Positive integers that are congruent to {0, 1, 2, 4} mod 8. - Michael Somos, Dec 12 2023

Examples

			G.f. = 1 + 2*x + 4*x^2 + 8*x^3 + 9*x^4 + 10*x^5 + 12*x^6+ 16*x^7 + ... - _Michael Somos_, Dec 12 2023
		

References

  • T. Y. Lam, The Algebraic Theory of Quadratic Forms. Benjamin, Reading, MA, 1973, p. 131.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Essentially the same as A047466.
Cf. A008621. - Johannes W. Meijer, Jun 07 2011
Cf. A209675.

Programs

  • Haskell
    a003485 n = a003485_list !! n
    a003485_list = 1 : 2 : 4 : 8 : 9 : zipWith (+)
       (drop 4 a003485_list) (zipWith (-) (tail a003485_list) a003485_list)
    -- Reinhard Zumkeller, Mar 11 2012
    
  • Maple
    A003485:= proc(n): ceil((n+1)/4) + ceil((n)/4) + 2*ceil((n-1)/4) + 4*ceil((n-2)/4) end: seq(A003485(n), n=0..62); # Johannes W. Meijer, Jun 07 2011
  • Mathematica
    CoefficientList[Series[(1+x+2x^2+4x^3)/((1-x)(1-x^4)),{x,0,70}],x] (* or *) LinearRecurrence[{1,0,0,1,-1},{1,2,4,8,9},71] (* Harvey P. Dale, Jun 13 2011 *)
    a[ n_] := 2*n + Max[0, 2-Mod[n-3, 4]]; (* Michael Somos, Dec 12 2023 *)
  • PARI
    {a(n) = 2*n + max(0, 2 - (n-3)%4)}; /* Michael Somos, Dec 12 2023 */

Formula

G.f.: (1 + x + 2*x^2 + 4*x^3) / ((1-x)*(1-x^4)). - Simon Plouffe in his 1992 dissertation
a(n) = ceiling((n+1)/4) + ceiling((n)/4) + 2*ceiling((n-1)/4) + 4*ceiling((n-2)/4). - Johannes W. Meijer, Jun 07 2011
a(n) = a(n-1) + a(n-4) - a(n-5); a(0)=1, a(1)=2, a(2)=4, a(3)=8, a(4)=9. - Harvey P. Dale, Jun 13 2011
a(n) = -A047507(-n) = a(n+4) - 8 for all n in Z. - Michael Somos, Dec 12 2023
Showing 1-1 of 1 results.