cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A003484 Radon function, also called Hurwitz-Radon numbers.

Original entry on oeis.org

1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 9, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 10, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 9, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 12, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 9, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 10, 1, 2, 1, 4, 1, 2
Offset: 1

Views

Author

Keywords

Comments

This sequence and A006519 (greatest power of 2 dividing n) are very similar, the difference being all zeros except for every 16th term (see A101119 for nonzero differences). - Simon Plouffe, Dec 02 2004
For all n congruent to 2^k (mod 2^(k+1)), a(n) is the same. Therefore, for any natural number m, the list of the first 2^m - 1 terms is palindromic. - Ivan N. Ianakiev, Jul 21 2019
Named after the Austrian mathematician Johann Radon (1887-1956) and the German mathematician Adolf Hurwitz (1859-1919). - Amiram Eldar, Jun 15 2021

Examples

			G.f. = x + 2*x^2 + x^3 + 4*x^4 + x^5 + 2*x^6 + x^7 + 8*x^8 + x^9 + ...
		

References

  • T. Y. Lam, The Algebraic Theory of Quadratic Forms. Benjamin, Reading, MA, 1973, p. 131.
  • Takashi Ono, Variations on a Theme of Euler, Plenum, NY, 1994, p. 192.
  • A. R. Rajwade, Squares, Camb. Univ. Press, London Math. Soc. Lecture Notes Series 171, 1993; see p. 127.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A053381 for a closely related sequence.

Programs

  • Haskell
    a003484 n = 2 * e + cycle [1,0,0,2] !! e  where e = a007814 n
    -- Reinhard Zumkeller, Mar 11 2012
    
  • Maple
    readlib(ifactors): for n from 1 to 150 do if n mod 2 = 1 then printf(`%d,`,1) fi: if n mod 2 = 0 then m := ifactors(n)[2][1][2]: if m mod 4 = 0 then printf(`%d,`,2*m+1) fi: if m mod 4 = 1 then printf(`%d,`,2*m) fi: if m mod 4 = 2 then printf(`%d,`,2*m) fi: if m mod 4 = 3 then printf(`%d,`,2*m+2) fi: fi: od: # James Sellers, Dec 07 2000
    nmax:=102; A003485 := proc(n): A003485(n) := ceil((n+1)/4) + ceil(n/4) + 2*ceil((n-1)/4) + 4*ceil((n-2)/4) end: A029837 := n -> ceil(simplify(log[2](n))): for p from 0 to A029837(nmax) do for n from 1 to ceil(nmax/(p+2)) do A003484((2*n-1)*2^p):= A003485(p): od: od: seq(A003484(n), n=1..nmax); # Johannes W. Meijer, Jun 07 2011, Dec 15 2012
  • Mathematica
    a[n_] := 8*Quotient[IntegerExponent[n, 2], 4] + 2^Mod[IntegerExponent[n, 2], 4]; Table[a[n], {n, 1, 102}] (* Jean-François Alcover, Sep 08 2011, after Paul D. Hanna *)
  • PARI
    a(n)=8*(valuation(n,2)\4)+2^(valuation(n,2)%4) /* Paul D. Hanna, Dec 02 2004 */
    
  • Python
    def A003484(n): return (((m:=(~n&n-1).bit_length())&-4)<<1)+(1<<(m&3)) # Chai Wah Wu, Jul 09 2022

Formula

a(n) = A003485(A007814(n)).
If n=2^(4*b+c)*d, 0<=c<=3, d odd, then a(n) = 8*b + 2^c.
If n=2^m*d, d odd, then a(n) = 2*m+1 if m=0 mod 4, a(n) = 2*m if m=1 or 2 mod 4, a(n) = 2*m+2 (otherwise, i.e., if m=3 mod 4).
Multiplicative with a(p^e) = 2e + a_(e mod 4) if p = 2; 1 if p > 2; where a = (1, 0, 0, 2). - David W. Wilson, Aug 01 2001
Dirichlet g.f. zeta(s) *(1-1/2^s)* {7*2^(-4*s) +1 +2^(3-3*s) +3*2^(1-5*s) +2^(1-s) +2^(2-6*s) +2^(2-2*s) }/ (1-2^(-4*s))^2. - R. J. Mathar, Mar 04 2011
a(A005408(n))=1; a(2*n) = A209675(n); a(A016825(n))=2; a(A017113(n))=4; a(A051062(n))=8. - Reinhard Zumkeller, Mar 11 2012
a((2*n-1)*2^p) = A003485(p), p >=0. - Johannes W. Meijer, Jun 07 2011, Dec 15 2012
Lambert series g.f. Sum_(k >=0) q^(2^(4*k))/(1-q^(2^(4*k))) +q^(2^(4*k+1))/(1-q^(2^(4*k+1))) +2*q^(2^(4*k+2))/(1-q^(2^(4*k+2))) +4*q^(2^(4*k+3))/(1-q^(2^(4*k+3))). - Mamuka Jibladze, Dec 07 2016
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 8/3. - Amiram Eldar, Oct 22 2022

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Mar 20 2000

A209675 Radon function at even positions: a(n) = A003484(2*n).

Original entry on oeis.org

2, 4, 2, 8, 2, 4, 2, 9, 2, 4, 2, 8, 2, 4, 2, 10, 2, 4, 2, 8, 2, 4, 2, 9, 2, 4, 2, 8, 2, 4, 2, 12, 2, 4, 2, 8, 2, 4, 2, 9, 2, 4, 2, 8, 2, 4, 2, 10, 2, 4, 2, 8, 2, 4, 2, 9, 2, 4, 2, 8, 2, 4, 2, 16, 2, 4, 2, 8, 2, 4, 2, 9, 2, 4, 2, 8, 2, 4, 2, 10, 2, 4, 2, 8, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 11 2012

Keywords

Crossrefs

Programs

  • Haskell
    a209675 = a003484 . (* 2)
  • Mathematica
    a[n_] := 8*Floor[(e = IntegerExponent[n, 2] + 1)/4] + 2^Mod[e, 4]; Array[a, 100] (* Amiram Eldar, Nov 29 2022 *)

Formula

a(n) = A053381(n-1) + 1.
a(n) > 1.
a(A005408(n)) = 2; a(A016825(n)) = 4; a(A017113(n)) = 8; a(A051062(n)) = 9.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 4/3. - Amiram Eldar, Nov 29 2022

A101120 Records in A101119, which forms the nonzero differences of A006519 and A003484.

Original entry on oeis.org

7, 22, 52, 112, 239, 494, 1004, 2024, 4071, 8166, 16356, 32736, 65503, 131038, 262108, 524248, 1048535, 2097110, 4194260, 8388560, 16777167, 33554382, 67108812, 134217672, 268435399, 536870854, 1073741764, 2147483584, 4294967231, 8589934526, 17179869116, 34359738296
Offset: 1

Views

Author

Simon Plouffe and Paul D. Hanna, Dec 02 2004

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3,-2,0,1,-3,2},{7,22,52,112,239,494},30] (* Harvey P. Dale, Jan 23 2023 *)
  • PARI
    a(n)=2^(n+3)-2^((n-1)%4)-8*((n+3)\4)
    
  • Python
    def A101120(n): return (1<<(n+3))-(1<<((n-1)&3))-(((n+3)&-4)<<1) # Chai Wah Wu, Jul 10 2022

Formula

a(n) = A101119(2^(n-1)) for n>=1.
a(n) = 2^(n+3) - 2^((n-1)(mod 4)) - 8*floor((n+3)/4).
a(n) = 2^(n+3) - A003485(n+3). - Johannes W. Meijer, Oct 31 2012
From Chai Wah Wu, Apr 15 2017: (Start)
a(n) = 3*a(n-1) - 2*a(n-2) + a(n-4) - 3*a(n-5) + 2*a(n-6) for n > 6.
G.f.: x*(-x - 7)/((x - 1)^2*(x + 1)*(2*x - 1)*(x^2 + 1)). (End)
E.g.f.: (exp(x)*(32*exp(x) - 8*x - 27) - 4*cos(x) - cosh(x) - 2*sin(x) + sinh(x))/4. - Stefano Spezia, Jun 06 2023

A047466 Numbers that are congruent to {0, 1, 2, 4} mod 8.

Original entry on oeis.org

0, 1, 2, 4, 8, 9, 10, 12, 16, 17, 18, 20, 24, 25, 26, 28, 32, 33, 34, 36, 40, 41, 42, 44, 48, 49, 50, 52, 56, 57, 58, 60, 64, 65, 66, 68, 72, 73, 74, 76, 80, 81, 82, 84, 88, 89, 90, 92, 96, 97, 98, 100, 104, 105, 106, 108, 112, 113, 114, 116, 120, 121, 122
Offset: 1

Views

Author

Keywords

Crossrefs

Essentially the same as A003485.

Programs

  • Magma
    [n: n in [0..120] | n mod 8 in [0,1,2,4]];
    
  • Maple
    A047466:=n->2*n-4+(3-I^(2*n))*(1-I^(n*(n+1)))/4: seq(A047466(n), n=1..100); # Wesley Ivan Hurt, Jun 01 2016
  • Mathematica
    Select[Range[0,120], MemberQ[{0, 1, 2, 4}, Mod[#, 8]] &] (* or *) LinearRecurrence[{1, 0, 0, 1, -1}, {0, 1, 2, 4, 8}, 60] (* Bruno Berselli, Jul 18 2012 *)
  • Maxima
    makelist(2*n-4+(3-(-1)^n)*(1-%i^(n*(n+1)))/4,n,1,60);
    
  • PARI
    concat(0, Vec((1+x+2*x^2+4*x^3)/((1+x)*(1+x^2)*(1-x)^2)+O(x^60))) (End)

Formula

G.f.: x^2*(1+x+2*x^2+4*x^3) / ( (1+x)*(1+x^2)*(1-x)^2 ). - R. J. Mathar, Oct 08 2011
a(n) = 2*n-4+(3-(-1)^n)*(1-i^(n*(n+1)))/4, where i=sqrt(-1). - Bruno Berselli, Jul 18 2012
From Wesley Ivan Hurt, Jun 01 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(2k) = A047461(k), a(2k-1) = A047467(k). (End)
Sum_{n>=2} (-1)^n/a(n) = (1+2*sqrt(2))*Pi/32 + (3+sqrt(2))*log(2)/16 - sqrt(2)*log(2-sqrt(2))/8. - Amiram Eldar, Dec 20 2021

A047507 Numbers that are congruent to {0, 4, 6, 7} mod 8.

Original entry on oeis.org

0, 4, 6, 7, 8, 12, 14, 15, 16, 20, 22, 23, 24, 28, 30, 31, 32, 36, 38, 39, 40, 44, 46, 47, 48, 52, 54, 55, 56, 60, 62, 63, 64, 68, 70, 71, 72, 76, 78, 79, 80, 84, 86, 87, 88, 92, 94, 95, 96, 100, 102, 103, 104, 108, 110, 111, 112, 116, 118, 119, 120, 124
Offset: 1

Views

Author

Keywords

Examples

			G.f. = 4*x^2 + 6*x^3 + 7*x^4 + 8*x^5 + 12*x^6 + 14*x^7 + 15*x^8 + 16*x^9 + ... - _Michael Somos_, Dec 12 2023
		

Crossrefs

Programs

  • Magma
    [n : n in [0..150] | n mod 8 in [0, 4, 6, 7]]; // Wesley Ivan Hurt, May 27 2016
    
  • Maple
    A047507:=n->(8*n-3+I^(2*n)-(1+2*I)*I^(-n)-(1-2*I)*I^n)/4: seq(A047507(n), n=1..100); # Wesley Ivan Hurt, May 27 2016
  • Mathematica
    Table[(8n-3+I^(2n)-(1+2*I)*I^(-n)-(1-2*I)*I^n)/4, {n, 80}] (* Wesley Ivan Hurt, May 27 2016 *)
    a[ n_] := 2*n - Max[0, 2 - Mod[1-n, 4]]; (* Michael Somos, Dec 12 2023 *)
  • PARI
    {a(n) = 2*n - max(0, 2 - (1-n)%4)}; /* Michael Somos, Dec 12 2023 */

Formula

G.f.: x^2*(4+2*x+x^2+x^3) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Nov 06 2015
From Wesley Ivan Hurt, May 27 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (8*n-3+i^(2*n)-(1+2*i)*i^(-n)-(1-2*i)*i^n)/4 where i=sqrt(-1).
a(2k) = A047535(k), a(2k-1) = A047451(k). (End)
E.g.f.: (2 - 2*sin(x) - cos(x) + (4*x - 2)*sinh(x) + (4*x - 1)*cosh(x))/2. - Ilya Gutkovskiy, May 27 2016
Sum_{n>=2} (-1)^n/a(n) = (6-sqrt(2))*log(2)/16 + sqrt(2)*log(2+sqrt(2))/8 - sqrt(2)*Pi/16. - Amiram Eldar, Dec 23 2021
a(n) = -A003485(-n) = a(n+4) - 8 for all n in Z. - Michael Somos, Dec 12 2023
Showing 1-5 of 5 results.