cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A051062 a(n) = 16*n + 8.

Original entry on oeis.org

8, 24, 40, 56, 72, 88, 104, 120, 136, 152, 168, 184, 200, 216, 232, 248, 264, 280, 296, 312, 328, 344, 360, 376, 392, 408, 424, 440, 456, 472, 488, 504, 520, 536, 552, 568, 584, 600, 616, 632, 648, 664, 680, 696, 712, 728, 744, 760, 776, 792, 808, 824, 840
Offset: 0

Views

Author

Keywords

Comments

Apart from initial term(s), dimension of the space of weight 2n cuspidal newforms for Gamma_0(97).
n such that 32 is the largest power of 2 dividing A003629(k)^n-1 for any k. - Benoit Cloitre, Mar 23 2002
Continued fraction expansion of tanh(1/8). - Benoit Cloitre, Dec 17 2002
If Y and Z are 2-blocks of a (4n+1)-set X then a(n-1) is the number of 3-subsets of X intersecting both Y and Z. - Milan Janjic, Oct 28 2007
General form: (q*n+x)*q x=+1; q=2=A016825, q=3=A017197, q=4=A119413, ... x=-1; q=3=A017233, q=4=A098502, ... x=+2; q=4=A051062, ... - Vladimir Joseph Stephan Orlovsky, Feb 16 2009
a(n)*n+1 = (4n+1)^2 and a(n)*(n+1)+1 = (4n+3)^2 are both perfect squares. - Carmine Suriano, Jun 01 2014
For all positive integers n, there are infinitely many positive integers k such that k*n + 1 and k*(n+1) + 1 are both perfect squares. Except for 8, all the numbers of this sequence are the smallest integers k which are solutions for getting two perfect squares. Example: a(1) = 24 and 24 * 1 + 1 = 25 = 5^2, then 24 * (1+1) + 1 = 49 = 7^2. [Reference AMM] - Bernard Schott, Sep 24 2017
Numbers k such that 3^k + 1 is divisible by 17*193. - Bruno Berselli, Aug 22 2018

References

  • Letter from Gary W. Adamson concerning Prouhet-Thue-Morse sequence, Nov 11 1999.

Crossrefs

Programs

Formula

a(n) = A118413(n+1,4) for n>3. - Reinhard Zumkeller, Apr 27 2006
a(n) = 32*n - a(n-1) for n>0, a(0)=8. - Vincenzo Librandi, Aug 06 2010
A003484(a(n)) = 8; A209675(a(n)) = 9. - Reinhard Zumkeller, Mar 11 2012
A007814(a(n)) = 3; A037227(a(n)) = 7. - Reinhard Zumkeller, Jun 30 2012
a(-1 - n) = - a(n). - Michael Somos, Jun 02 2014
Sum_{n>=0} (-1)^n/a(n) = Pi/32 (A244978). - Amiram Eldar, Feb 28 2023
From Elmo R. Oliveira, Apr 16 2024: (Start)
G.f.: 8*(1+x)/(1-x)^2.
E.g.f.: 8*exp(x)*(1 + 2*x).
a(n) = 8*A005408(n) = A008598(n) + 8 = A139098(n+1) - A139098(n).
a(n) = 4*A016825(n) = 2*A017113(n) = 2*a(n-1) - a(n-2) for n >= 2. (End)
From Amiram Eldar, Nov 25 2024: (Start)
Product_{n>=0} (1 - (-1)^n/a(n)) = sqrt(2)*sin(7*Pi/32).
Product_{n>=0} (1 + (-1)^n/a(n)) = sqrt(2)*cos(7*Pi/32). (End)

A003484 Radon function, also called Hurwitz-Radon numbers.

Original entry on oeis.org

1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 9, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 10, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 9, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 12, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 9, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 10, 1, 2, 1, 4, 1, 2
Offset: 1

Views

Author

Keywords

Comments

This sequence and A006519 (greatest power of 2 dividing n) are very similar, the difference being all zeros except for every 16th term (see A101119 for nonzero differences). - Simon Plouffe, Dec 02 2004
For all n congruent to 2^k (mod 2^(k+1)), a(n) is the same. Therefore, for any natural number m, the list of the first 2^m - 1 terms is palindromic. - Ivan N. Ianakiev, Jul 21 2019
Named after the Austrian mathematician Johann Radon (1887-1956) and the German mathematician Adolf Hurwitz (1859-1919). - Amiram Eldar, Jun 15 2021

Examples

			G.f. = x + 2*x^2 + x^3 + 4*x^4 + x^5 + 2*x^6 + x^7 + 8*x^8 + x^9 + ...
		

References

  • T. Y. Lam, The Algebraic Theory of Quadratic Forms. Benjamin, Reading, MA, 1973, p. 131.
  • Takashi Ono, Variations on a Theme of Euler, Plenum, NY, 1994, p. 192.
  • A. R. Rajwade, Squares, Camb. Univ. Press, London Math. Soc. Lecture Notes Series 171, 1993; see p. 127.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A053381 for a closely related sequence.

Programs

  • Haskell
    a003484 n = 2 * e + cycle [1,0,0,2] !! e  where e = a007814 n
    -- Reinhard Zumkeller, Mar 11 2012
    
  • Maple
    readlib(ifactors): for n from 1 to 150 do if n mod 2 = 1 then printf(`%d,`,1) fi: if n mod 2 = 0 then m := ifactors(n)[2][1][2]: if m mod 4 = 0 then printf(`%d,`,2*m+1) fi: if m mod 4 = 1 then printf(`%d,`,2*m) fi: if m mod 4 = 2 then printf(`%d,`,2*m) fi: if m mod 4 = 3 then printf(`%d,`,2*m+2) fi: fi: od: # James Sellers, Dec 07 2000
    nmax:=102; A003485 := proc(n): A003485(n) := ceil((n+1)/4) + ceil(n/4) + 2*ceil((n-1)/4) + 4*ceil((n-2)/4) end: A029837 := n -> ceil(simplify(log[2](n))): for p from 0 to A029837(nmax) do for n from 1 to ceil(nmax/(p+2)) do A003484((2*n-1)*2^p):= A003485(p): od: od: seq(A003484(n), n=1..nmax); # Johannes W. Meijer, Jun 07 2011, Dec 15 2012
  • Mathematica
    a[n_] := 8*Quotient[IntegerExponent[n, 2], 4] + 2^Mod[IntegerExponent[n, 2], 4]; Table[a[n], {n, 1, 102}] (* Jean-François Alcover, Sep 08 2011, after Paul D. Hanna *)
  • PARI
    a(n)=8*(valuation(n,2)\4)+2^(valuation(n,2)%4) /* Paul D. Hanna, Dec 02 2004 */
    
  • Python
    def A003484(n): return (((m:=(~n&n-1).bit_length())&-4)<<1)+(1<<(m&3)) # Chai Wah Wu, Jul 09 2022

Formula

a(n) = A003485(A007814(n)).
If n=2^(4*b+c)*d, 0<=c<=3, d odd, then a(n) = 8*b + 2^c.
If n=2^m*d, d odd, then a(n) = 2*m+1 if m=0 mod 4, a(n) = 2*m if m=1 or 2 mod 4, a(n) = 2*m+2 (otherwise, i.e., if m=3 mod 4).
Multiplicative with a(p^e) = 2e + a_(e mod 4) if p = 2; 1 if p > 2; where a = (1, 0, 0, 2). - David W. Wilson, Aug 01 2001
Dirichlet g.f. zeta(s) *(1-1/2^s)* {7*2^(-4*s) +1 +2^(3-3*s) +3*2^(1-5*s) +2^(1-s) +2^(2-6*s) +2^(2-2*s) }/ (1-2^(-4*s))^2. - R. J. Mathar, Mar 04 2011
a(A005408(n))=1; a(2*n) = A209675(n); a(A016825(n))=2; a(A017113(n))=4; a(A051062(n))=8. - Reinhard Zumkeller, Mar 11 2012
a((2*n-1)*2^p) = A003485(p), p >=0. - Johannes W. Meijer, Jun 07 2011, Dec 15 2012
Lambert series g.f. Sum_(k >=0) q^(2^(4*k))/(1-q^(2^(4*k))) +q^(2^(4*k+1))/(1-q^(2^(4*k+1))) +2*q^(2^(4*k+2))/(1-q^(2^(4*k+2))) +4*q^(2^(4*k+3))/(1-q^(2^(4*k+3))). - Mamuka Jibladze, Dec 07 2016
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 8/3. - Amiram Eldar, Oct 22 2022

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Mar 20 2000

A003485 Hurwitz-Radon function at powers of 2.

Original entry on oeis.org

1, 2, 4, 8, 9, 10, 12, 16, 17, 18, 20, 24, 25, 26, 28, 32, 33, 34, 36, 40, 41, 42, 44, 48, 49, 50, 52, 56, 57, 58, 60, 64, 65, 66, 68, 72, 73, 74, 76, 80, 81, 82, 84, 88, 89, 90, 92, 96, 97, 98, 100, 104, 105, 106, 108, 112, 113, 114, 116, 120, 121, 122, 124
Offset: 0

Views

Author

Keywords

Comments

Positive integers that are congruent to {0, 1, 2, 4} mod 8. - Michael Somos, Dec 12 2023

Examples

			G.f. = 1 + 2*x + 4*x^2 + 8*x^3 + 9*x^4 + 10*x^5 + 12*x^6+ 16*x^7 + ... - _Michael Somos_, Dec 12 2023
		

References

  • T. Y. Lam, The Algebraic Theory of Quadratic Forms. Benjamin, Reading, MA, 1973, p. 131.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Essentially the same as A047466.
Cf. A008621. - Johannes W. Meijer, Jun 07 2011
Cf. A209675.

Programs

  • Haskell
    a003485 n = a003485_list !! n
    a003485_list = 1 : 2 : 4 : 8 : 9 : zipWith (+)
       (drop 4 a003485_list) (zipWith (-) (tail a003485_list) a003485_list)
    -- Reinhard Zumkeller, Mar 11 2012
    
  • Maple
    A003485:= proc(n): ceil((n+1)/4) + ceil((n)/4) + 2*ceil((n-1)/4) + 4*ceil((n-2)/4) end: seq(A003485(n), n=0..62); # Johannes W. Meijer, Jun 07 2011
  • Mathematica
    CoefficientList[Series[(1+x+2x^2+4x^3)/((1-x)(1-x^4)),{x,0,70}],x] (* or *) LinearRecurrence[{1,0,0,1,-1},{1,2,4,8,9},71] (* Harvey P. Dale, Jun 13 2011 *)
    a[ n_] := 2*n + Max[0, 2-Mod[n-3, 4]]; (* Michael Somos, Dec 12 2023 *)
  • PARI
    {a(n) = 2*n + max(0, 2 - (n-3)%4)}; /* Michael Somos, Dec 12 2023 */

Formula

G.f.: (1 + x + 2*x^2 + 4*x^3) / ((1-x)*(1-x^4)). - Simon Plouffe in his 1992 dissertation
a(n) = ceiling((n+1)/4) + ceiling((n)/4) + 2*ceiling((n-1)/4) + 4*ceiling((n-2)/4). - Johannes W. Meijer, Jun 07 2011
a(n) = a(n-1) + a(n-4) - a(n-5); a(0)=1, a(1)=2, a(2)=4, a(3)=8, a(4)=9. - Harvey P. Dale, Jun 13 2011
a(n) = -A047507(-n) = a(n+4) - 8 for all n in Z. - Michael Somos, Dec 12 2023

A053381 Maximal number of linearly independent smooth nowhere-zero vector fields on a (2n+1)-sphere.

Original entry on oeis.org

1, 3, 1, 7, 1, 3, 1, 8, 1, 3, 1, 7, 1, 3, 1, 9, 1, 3, 1, 7, 1, 3, 1, 8, 1, 3, 1, 7, 1, 3, 1, 11, 1, 3, 1, 7, 1, 3, 1, 8, 1, 3, 1, 7, 1, 3, 1, 9, 1, 3, 1, 7, 1, 3, 1, 8, 1, 3, 1, 7, 1, 3, 1, 15, 1, 3, 1, 7, 1, 3, 1, 8, 1, 3, 1, 7, 1, 3, 1, 9, 1, 3, 1, 7, 1, 3, 1, 8, 1, 3, 1, 7, 1, 3, 1, 11, 1, 3, 1, 7, 1, 3
Offset: 0

Views

Author

Warren D. Smith, Jan 06 2000

Keywords

Comments

The corresponding terms for a 2n-sphere are all 0 ("you can't comb the hair on a billiard ball"). The "3" and "7" come from the quaternions and octonions.
b(n) = a(n-1): b(2^e) = ((e+1) idiv 4) + 2^((e+1) mod 4) - 1, b(p^e) = 1, p>2. - Christian G. Bower, May 18 2005
a(n-1) is multiplicative. - Christian G. Bower, Jun 03 2005

Crossrefs

For another version see A003484. Cf. A189995, A001676.

Programs

  • C
    int MaxLinInd(int n){ /* Returns max # linearly indep smooth nowhere zero * vector fields on S^{n-1}, n=1,2,... */ int b,c,d,rho; b = 0; while((n & 1)==0){ n /= 2; b++; } c = b & 3; d = (b - c)/4; rho = (1 << c) + 8*d; return( rho - 1); }
    
  • C
    int MaxLinInd(int n) { int b = _builtin_ctz(n); return (1<<b%4) + b/4*8 - 1; } /* _Jeremy Tan, Apr 09 2021 */
  • Maple
    with(numtheory): for n from 1 to 601 by 2 do c := irem(ifactors(n+1)[2,1,2],4): d := iquo(ifactors(n+1)[2,1,2],4): printf(`%d,`, 2^c+8*d-1) od:
    nmax:=101: A047530 := proc(n): ceil(n/4) + 2*ceil((n-1)/4) + 4*ceil((n-2)/4) + ceil((n-3)/4) end: for p from 0 to ceil(simplify(log[2](nmax))) do for n from 0 to ceil(nmax/(p+2))+1 do A053381((2*n+1)*2^p-1) := A047530(p+1): od: od: seq(A053381(n), n=0..nmax); # Johannes W. Meijer, Jun 07 2011, revised Jan 29 2013
  • Mathematica
    a[n_] := Module[{b, c, d, rho, n0}, n0 = 2*n; b = 0; While[BitAnd[n0, 1] == 0, n0 /= 2; b++]; c = BitAnd[b, 3]; d = (b - c)/4; rho = 2^c + 8*d; Return[rho - 1]]; Table[a[n], {n, 1, 102}] (* Jean-François Alcover, May 16 2013, translated from C *)

Formula

Let f(n) be the number of linearly independent smooth nowhere-zero vector fields on an n-sphere. Then f(n) = 2^c + 8d - 1 where n+1 = (2a+1) 2^b and b = c+4d and 0 <= c <= 3. f(n) = 0 if n is even.
a((2*n+1)*2^p-1) = A047530(p+1), p >= 0 and n >= 0. a(2*n) = 1, n >= 0, and a(2^p-1) = A047530(p+1), p >= 0. - Johannes W. Meijer, Jun 07 2011
a(n) = A209675(n+1) - 1. - Reinhard Zumkeller, Mar 11 2012
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 10/3. - Amiram Eldar, Nov 29 2022

Extensions

More terms from James Sellers, Jun 01 2000

A209776 Triangle of coefficients of polynomials v(n,x) jointly generated with A209773; see the Formula section.

Original entry on oeis.org

1, 3, 2, 5, 8, 4, 9, 22, 22, 8, 15, 52, 78, 56, 16, 25, 112, 226, 242, 136, 32, 41, 228, 580, 828, 692, 320, 64, 67, 446, 1374, 2456, 2726, 1872, 736, 128, 109, 848, 3074, 6612, 9158, 8336, 4864, 1664, 256, 177, 1578, 6590, 16590, 27564, 31250
Offset: 1

Views

Author

Clark Kimberling, Mar 15 2012

Keywords

Comments

Alternating row sums: 1,1,1,1,1,1,1,1,...
For a discussion and guide to related arrays, see A208510.

Examples

			First five rows:
1
3....2
5....8....4
9....22...22...8
15...52...78...56...16
First three polynomials v(n,x): 1, 3 + 2x , 5 + 8x + 4x^2.
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x];
    v[n_, x_] := (x + 1)*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A209775 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A209776 *)

Formula

u(n,x)=x*u(n-1,x)+(x+1)*v(n-1,x),
v(n,x)=(x+1)*u(n-1,x)+2x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Showing 1-5 of 5 results.