cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047467 Numbers that are congruent to {0, 2} mod 8.

Original entry on oeis.org

0, 2, 8, 10, 16, 18, 24, 26, 32, 34, 40, 42, 48, 50, 56, 58, 64, 66, 72, 74, 80, 82, 88, 90, 96, 98, 104, 106, 112, 114, 120, 122, 128, 130, 136, 138, 144, 146, 152, 154, 160, 162, 168, 170, 176, 178, 184, 186, 192, 194, 200, 202, 208, 210, 216, 218, 224, 226, 232
Offset: 1

Views

Author

Keywords

Crossrefs

Union of A008590 and A017089.

Programs

  • Mathematica
    {#,#+2}&/@(8*Range[0,30])//Flatten (* or *) LinearRecurrence[{1,1,-1},{0,2,8},60] (* Harvey P. Dale, Nov 30 2019 *)
  • PARI
    forstep(n=0,200,[2,6],print1(n", ")) \\ Charles R Greathouse IV, Oct 17 2011
    
  • PARI
    a(n) = 4*n - 5 - (-1)^n; \\ David Lovler, Jul 25 2022

Formula

From R. J. Mathar, Sep 19 2008: (Start)
a(n) = 4*n - 5 - (-1)^n = 2*A042948(n-1).
G.f.: 2*x^2*(1+3x)/((1-x)^2*(1+x)). (End)
a(n) = 8*n - a(n-1) - 14 with a(1)=0. - Vincenzo Librandi, Aug 06 2010
a(n+1) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=2 and b(k)=2^(k+2)for k > 0. - Philippe Deléham, Oct 17 2011
a(n) = floor((8/3)*floor(3*n/2)). - Clark Kimberling, Jul 04 2012
Sum_{n>=2} (-1)^n/a(n) = Pi/16 + 3*log(2)/8. - Amiram Eldar, Dec 18 2021
E.g.f.: 6 + (4*x - 5)*exp(x) - exp(-x). - David Lovler, Jul 22 2022

Extensions

More terms from Vincenzo Librandi, Aug 06 2010