A047467 Numbers that are congruent to {0, 2} mod 8.
0, 2, 8, 10, 16, 18, 24, 26, 32, 34, 40, 42, 48, 50, 56, 58, 64, 66, 72, 74, 80, 82, 88, 90, 96, 98, 104, 106, 112, 114, 120, 122, 128, 130, 136, 138, 144, 146, 152, 154, 160, 162, 168, 170, 176, 178, 184, 186, 192, 194, 200, 202, 208, 210, 216, 218, 224, 226, 232
Offset: 1
Links
- David Lovler, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Programs
-
Mathematica
{#,#+2}&/@(8*Range[0,30])//Flatten (* or *) LinearRecurrence[{1,1,-1},{0,2,8},60] (* Harvey P. Dale, Nov 30 2019 *)
-
PARI
forstep(n=0,200,[2,6],print1(n", ")) \\ Charles R Greathouse IV, Oct 17 2011
-
PARI
a(n) = 4*n - 5 - (-1)^n; \\ David Lovler, Jul 25 2022
Formula
From R. J. Mathar, Sep 19 2008: (Start)
a(n) = 4*n - 5 - (-1)^n = 2*A042948(n-1).
G.f.: 2*x^2*(1+3x)/((1-x)^2*(1+x)). (End)
a(n) = 8*n - a(n-1) - 14 with a(1)=0. - Vincenzo Librandi, Aug 06 2010
a(n+1) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=2 and b(k)=2^(k+2)for k > 0. - Philippe Deléham, Oct 17 2011
a(n) = floor((8/3)*floor(3*n/2)). - Clark Kimberling, Jul 04 2012
Sum_{n>=2} (-1)^n/a(n) = Pi/16 + 3*log(2)/8. - Amiram Eldar, Dec 18 2021
E.g.f.: 6 + (4*x - 5)*exp(x) - exp(-x). - David Lovler, Jul 22 2022
Extensions
More terms from Vincenzo Librandi, Aug 06 2010