cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047484 Numbers that are congruent to {3, 5, 7} mod 8.

Original entry on oeis.org

3, 5, 7, 11, 13, 15, 19, 21, 23, 27, 29, 31, 35, 37, 39, 43, 45, 47, 51, 53, 55, 59, 61, 63, 67, 69, 71, 75, 77, 79, 83, 85, 87, 91, 93, 95, 99, 101, 103, 107, 109, 111, 115, 117, 119, 123, 125, 127, 131, 133, 135, 139, 141, 143, 147, 149, 151, 155, 157, 159
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[3, 5, 7, 11]; [n le 4 select I[n] else Self(n-1)+Self(n-3) -Self(n-4): n in [1..70]]; // Vincenzo Librandi, May 17 2012
  • Maple
    A047484:=n->(24*n-3-6*cos(2*n*Pi/3)+2*sqrt(3)*sin(2*n*Pi/3))/9: seq(A047484(n), n=1..100); # Wesley Ivan Hurt, Jun 10 2016
  • Mathematica
    Select[Range[0,300], MemberQ[{3,5,7}, Mod[#,8]]&] (* Vincenzo Librandi, May 17 2012 *)

Formula

G.f.: x*(3+2*x+2*x^2+x^3)/((1-x)^2*(1+x+x^2)). [Colin Barker, May 14 2012]
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4. - Vincenzo Librandi, May 17 2012
From Wesley Ivan Hurt, Jun 10 2016: (Start)
a(n) = (24*n-3-6*cos(2*n*Pi/3)+2*sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 8k-1, a(3k-1) = 8k-3, a(3k-2) = 8k-5. (End)
a(n) = 3*n - floor((n-1)/3) - ((n-1) mod 3). - Wesley Ivan Hurt, Sep 26 2017
a(n) = 2*(n + floor((n-1)/3)) + 1. - Wolfdieter Lang, Sep 11 2021