cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047499 Numbers that are congruent to {3, 4, 5, 7} mod 8.

Original entry on oeis.org

3, 4, 5, 7, 11, 12, 13, 15, 19, 20, 21, 23, 27, 28, 29, 31, 35, 36, 37, 39, 43, 44, 45, 47, 51, 52, 53, 55, 59, 60, 61, 63, 67, 68, 69, 71, 75, 76, 77, 79, 83, 84, 85, 87, 91, 92, 93, 95, 99, 100, 101, 103, 107, 108, 109, 111, 115, 116, 117, 119, 123, 124
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n : n in [0..150] | n mod 8 in [3, 4, 5, 7]]; // Wesley Ivan Hurt, May 27 2016
  • Maple
    A047499:=n->(8*n-1-I^(2*n)-(1-2*I)*I^(-n)-(1+2*I)*I^n)/4: seq(A047499(n), n=1..100); # Wesley Ivan Hurt, May 27 2016
  • Mathematica
    Table[(8n-1-I^(2n)-(1-2*I)*I^(-n)-(1+2*I)*I^n)/4, {n, 80}] (* Wesley Ivan Hurt, May 27 2016 *)
    LinearRecurrence[{1,0,0,1,-1},{3,4,5,7,11},70] (* Harvey P. Dale, May 16 2025 *)

Formula

G.f.: x*(3+x+x^2+2*x^3+x^4) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Nov 06 2015
From Wesley Ivan Hurt, May 27 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (8*n-1-i^(2*n)-(1-2*i)*i^(-n)-(1+2*i)*i^n)/4 where i=sqrt(-1).
a(2k) = A047535(k), a(2k-1) = A047621(k). (End)
E.g.f.: 1 + sin(x) - cos(x)/2 + 2*x*sinh(x) + (2*x - 1/2)*cosh(x). - Ilya Gutkovskiy, May 27 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = (sqrt(2)+1)*Pi/16 + (4-3*sqrt(2))*log(2)/16 + 3*sqrt(2)*log(2-sqrt(2))/8. - Amiram Eldar, Dec 26 2021