A047499 Numbers that are congruent to {3, 4, 5, 7} mod 8.
3, 4, 5, 7, 11, 12, 13, 15, 19, 20, 21, 23, 27, 28, 29, 31, 35, 36, 37, 39, 43, 44, 45, 47, 51, 52, 53, 55, 59, 60, 61, 63, 67, 68, 69, 71, 75, 76, 77, 79, 83, 84, 85, 87, 91, 92, 93, 95, 99, 100, 101, 103, 107, 108, 109, 111, 115, 116, 117, 119, 123, 124
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
Magma
[n : n in [0..150] | n mod 8 in [3, 4, 5, 7]]; // Wesley Ivan Hurt, May 27 2016
-
Maple
A047499:=n->(8*n-1-I^(2*n)-(1-2*I)*I^(-n)-(1+2*I)*I^n)/4: seq(A047499(n), n=1..100); # Wesley Ivan Hurt, May 27 2016
-
Mathematica
Table[(8n-1-I^(2n)-(1-2*I)*I^(-n)-(1+2*I)*I^n)/4, {n, 80}] (* Wesley Ivan Hurt, May 27 2016 *) LinearRecurrence[{1,0,0,1,-1},{3,4,5,7,11},70] (* Harvey P. Dale, May 16 2025 *)
Formula
G.f.: x*(3+x+x^2+2*x^3+x^4) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Nov 06 2015
From Wesley Ivan Hurt, May 27 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (8*n-1-i^(2*n)-(1-2*i)*i^(-n)-(1+2*i)*i^n)/4 where i=sqrt(-1).
E.g.f.: 1 + sin(x) - cos(x)/2 + 2*x*sinh(x) + (2*x - 1/2)*cosh(x). - Ilya Gutkovskiy, May 27 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = (sqrt(2)+1)*Pi/16 + (4-3*sqrt(2))*log(2)/16 + 3*sqrt(2)*log(2-sqrt(2))/8. - Amiram Eldar, Dec 26 2021