cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047507 Numbers that are congruent to {0, 4, 6, 7} mod 8.

Original entry on oeis.org

0, 4, 6, 7, 8, 12, 14, 15, 16, 20, 22, 23, 24, 28, 30, 31, 32, 36, 38, 39, 40, 44, 46, 47, 48, 52, 54, 55, 56, 60, 62, 63, 64, 68, 70, 71, 72, 76, 78, 79, 80, 84, 86, 87, 88, 92, 94, 95, 96, 100, 102, 103, 104, 108, 110, 111, 112, 116, 118, 119, 120, 124
Offset: 1

Views

Author

Keywords

Examples

			G.f. = 4*x^2 + 6*x^3 + 7*x^4 + 8*x^5 + 12*x^6 + 14*x^7 + 15*x^8 + 16*x^9 + ... - _Michael Somos_, Dec 12 2023
		

Crossrefs

Programs

  • Magma
    [n : n in [0..150] | n mod 8 in [0, 4, 6, 7]]; // Wesley Ivan Hurt, May 27 2016
    
  • Maple
    A047507:=n->(8*n-3+I^(2*n)-(1+2*I)*I^(-n)-(1-2*I)*I^n)/4: seq(A047507(n), n=1..100); # Wesley Ivan Hurt, May 27 2016
  • Mathematica
    Table[(8n-3+I^(2n)-(1+2*I)*I^(-n)-(1-2*I)*I^n)/4, {n, 80}] (* Wesley Ivan Hurt, May 27 2016 *)
    a[ n_] := 2*n - Max[0, 2 - Mod[1-n, 4]]; (* Michael Somos, Dec 12 2023 *)
  • PARI
    {a(n) = 2*n - max(0, 2 - (1-n)%4)}; /* Michael Somos, Dec 12 2023 */

Formula

G.f.: x^2*(4+2*x+x^2+x^3) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Nov 06 2015
From Wesley Ivan Hurt, May 27 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (8*n-3+i^(2*n)-(1+2*i)*i^(-n)-(1-2*i)*i^n)/4 where i=sqrt(-1).
a(2k) = A047535(k), a(2k-1) = A047451(k). (End)
E.g.f.: (2 - 2*sin(x) - cos(x) + (4*x - 2)*sinh(x) + (4*x - 1)*cosh(x))/2. - Ilya Gutkovskiy, May 27 2016
Sum_{n>=2} (-1)^n/a(n) = (6-sqrt(2))*log(2)/16 + sqrt(2)*log(2+sqrt(2))/8 - sqrt(2)*Pi/16. - Amiram Eldar, Dec 23 2021
a(n) = -A003485(-n) = a(n+4) - 8 for all n in Z. - Michael Somos, Dec 12 2023