A047514 Numbers that are congruent to {3, 4, 6, 7} mod 8.
3, 4, 6, 7, 11, 12, 14, 15, 19, 20, 22, 23, 27, 28, 30, 31, 35, 36, 38, 39, 43, 44, 46, 47, 51, 52, 54, 55, 59, 60, 62, 63, 67, 68, 70, 71, 75, 76, 78, 79, 83, 84, 86, 87, 91, 92, 94, 95, 99, 100, 102, 103, 107, 108, 110, 111, 115, 116, 118, 119, 123, 124
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
Magma
[n : n in [0..150] | n mod 8 in [3, 4, 6, 7]]; // Wesley Ivan Hurt, May 27 2016
-
Maple
A047514:=n->(1+I)*(4*n-4*n*I+(I-1)*I^(2*n)+I^(1-n)-I^n)/4: seq(A047514(n), n=1..100); # Wesley Ivan Hurt, May 27 2016
-
Mathematica
Table[(1+I)*(4n-4n*I+(I-1)*I^(2n)+I^(1-n)-I^n)/4, {n, 80}] (* Wesley Ivan Hurt, May 27 2016 *) LinearRecurrence[{1, 0, 0, 1, -1}, {3, 4, 6, 7, 11}, 100] (* Vincenzo Librandi, Aug 11 2016 *)
Formula
From Wesley Ivan Hurt, May 27 2016: (Start)
G.f.: x*(3+x+2*x^2+x^3+x^4) / ((x-1)^2*(1+x+x^2+x^3)).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (1+i)*(4*n-4*n*i+(i-1)*i^(2*n)+i^(1-n)-i^n)/4 where i=sqrt(-1).
E.g.f.: (2 + sin(x) - cos(x) + (4*x + 1)*sinh(x) + (4*x - 1)*cosh(x))/2. - Ilya Gutkovskiy, May 27 2016
From Wesley Ivan Hurt, Aug 10 2016: (Start)
a(n) = a(n-4) + 8 for n > 4.
a(4*k) = 8*k-1, a(4*k-1) = 8*k-2, a(4*k-2) = 8*k-4, a(4*k-3) = 8*k-5. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = (2*sqrt(2)-1)*Pi/16 - (sqrt(2)-1)*log(2)/8 + sqrt(2)*log(2-sqrt(2))/4. - Amiram Eldar, Dec 26 2021