A047521 Numbers that are congruent to {0, 7} mod 8.
0, 7, 8, 15, 16, 23, 24, 31, 32, 39, 40, 47, 48, 55, 56, 63, 64, 71, 72, 79, 80, 87, 88, 95, 96, 103, 104, 111, 112, 119, 120, 127, 128, 135, 136, 143, 144, 151, 152, 159, 160, 167, 168, 175, 176, 183, 184, 191, 192, 199, 200, 207, 208, 215, 216, 223, 224, 231, 232
Offset: 1
Links
- David Lovler, Table of n, a(n) for n = 1..10000
- Lars Pos, Met kleine stapjes grote sprongen make, Pythagoras 61-4. Solutions of returning to the origin after steps of increasing width 1,2,3,.. in the 4 directions on a square grid (in Dutch).
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Programs
-
Mathematica
{#,#+7}&/@(8*Range[0,30])//Flatten (* or *) LinearRecurrence[{1,1,-1},{0,7,8},60] (* Harvey P. Dale, Oct 30 2016 *)
-
PARI
a(n) = 4*n - 5/2 + 3*(-1)^n/2; \\ David Lovler, Jul 25 2022
-
R
kmax <- 10 # by choice a <- c(0,7) for(k in 3:kmax) a <- c(a, a + 2^k) a # Yosu Yurramendi, Jan 18 2022
Formula
a(n) = 8*n - a(n-1) - 9 (with a(1)=0). - Vincenzo Librandi, Aug 06 2010
From R. J. Mathar, Oct 08 2011: (Start)
a(n) = 3*(-1)^n/2 - 5/2 + 4*n.
G.f.: x^2*(7+x) / ( (1+x)*(x-1)^2 ). (End)
a(n+1) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=7 and b(k)=2^(k+2) for k > 0. - Philippe Deléham, Oct 17 2011
Sum_{n>=2} (-1)^n/a(n) = log(2)/2 + sqrt(2)*log(sqrt(2)+1)/8 - (sqrt(2)+1)*Pi/16. - Amiram Eldar, Dec 18 2021
E.g.f.: 1 + ((8*x -5)*exp(x) + 3*exp(-x))/2. David Lovler, Aug 22 2022
Extensions
More terms from Vincenzo Librandi, Aug 06 2010
Comments