cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047523 Numbers that are congruent to {0, 1, 7} mod 8.

Original entry on oeis.org

0, 1, 7, 8, 9, 15, 16, 17, 23, 24, 25, 31, 32, 33, 39, 40, 41, 47, 48, 49, 55, 56, 57, 63, 64, 65, 71, 72, 73, 79, 80, 81, 87, 88, 89, 95, 96, 97, 103, 104, 105, 111, 112, 113, 119, 120, 121, 127, 128, 129, 135, 136, 137, 143, 144, 145, 151, 152, 153, 159
Offset: 1

Views

Author

Keywords

Programs

  • Magma
    [n : n in [0..150] | n mod 8 in [0, 1, 7]]; // Wesley Ivan Hurt, Jun 13 2016
  • Maple
    A047523:=n->(24*n-24+15*cos(2*n*Pi/3)+5*sqrt(3)*sin(2*Pi*n/3))/9: seq(A047523(n), n=1..100); # Wesley Ivan Hurt, Jun 13 2016
  • Mathematica
    Select[Range[0, 150], MemberQ[{0, 1, 7}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jun 13 2016 *)
    LinearRecurrence[{1, 0, 1, -1}, {0, 1, 7, 8}, 100] (* Vincenzo Librandi, Jun 14 2016 *)

Formula

G.f.: x^2*(1+6*x+x^2) / ((1+x+x^2)*(x-1)^2). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, Jun 13 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (24*n-24+15*cos(2*n*Pi/3)+5*sqrt(3)*sin(2*Pi*n/3))/9.
a(3k) = 8k-1, a(3k-1) = 8k-7, a(3k-2) = 8k-8. (End)