A047523 Numbers that are congruent to {0, 1, 7} mod 8.
0, 1, 7, 8, 9, 15, 16, 17, 23, 24, 25, 31, 32, 33, 39, 40, 41, 47, 48, 49, 55, 56, 57, 63, 64, 65, 71, 72, 73, 79, 80, 81, 87, 88, 89, 95, 96, 97, 103, 104, 105, 111, 112, 113, 119, 120, 121, 127, 128, 129, 135, 136, 137, 143, 144, 145, 151, 152, 153, 159
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
Programs
-
Magma
[n : n in [0..150] | n mod 8 in [0, 1, 7]]; // Wesley Ivan Hurt, Jun 13 2016
-
Maple
A047523:=n->(24*n-24+15*cos(2*n*Pi/3)+5*sqrt(3)*sin(2*Pi*n/3))/9: seq(A047523(n), n=1..100); # Wesley Ivan Hurt, Jun 13 2016
-
Mathematica
Select[Range[0, 150], MemberQ[{0, 1, 7}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jun 13 2016 *) LinearRecurrence[{1, 0, 1, -1}, {0, 1, 7, 8}, 100] (* Vincenzo Librandi, Jun 14 2016 *)
Formula
G.f.: x^2*(1+6*x+x^2) / ((1+x+x^2)*(x-1)^2). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, Jun 13 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (24*n-24+15*cos(2*n*Pi/3)+5*sqrt(3)*sin(2*Pi*n/3))/9.
a(3k) = 8k-1, a(3k-1) = 8k-7, a(3k-2) = 8k-8. (End)