cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A054966 Numbers that are congruent to {0, 1, 8} mod 9.

Original entry on oeis.org

0, 1, 8, 9, 10, 17, 18, 19, 26, 27, 28, 35, 36, 37, 44, 45, 46, 53, 54, 55, 62, 63, 64, 71, 72, 73, 80, 81, 82, 89, 90, 91, 98, 99, 100, 107, 108, 109, 116, 117, 118, 125, 126, 127, 134, 135, 136, 143, 144, 145, 152, 153, 154, 161, 162, 163, 170, 171, 172, 179, 180
Offset: 1

Views

Author

Henry Bottomley, May 24 2000

Keywords

Comments

n == n^3 mod 9, so the iterated sum of the decimal digits of n and n^3 are equal.

References

  • H. I. Okagbue, M.O.Adamu, S.A. Bishop and A.A. Opanuga, Properties of Sequences Generated by Summing the Digits of Cubed Positive Integers, Indian Journal Of Natural Sciences, Vol. 6 / Issue 32 / October 2015

Crossrefs

Cf. A047523. Complement of A275910.

Programs

  • Magma
    [n : n in [0..200] | n mod 9 in [0, 1, 8]]; // Wesley Ivan Hurt, Jun 14 2016
  • Maple
    A054966:=n->3*n-3+2*cos(2*n*Pi/3)+2*sin(2*n*Pi/3)/sqrt(3): seq(A054966(n), n=1..100); # Wesley Ivan Hurt, Jun 14 2016
  • Mathematica
    Select[Range[0, 200], MemberQ[{0, 1, 8}, Mod[#, 9]] &] (* Wesley Ivan Hurt, Jun 14 2016 *)
    LinearRecurrence[{1, 0, 1, -1}, {0, 1, 8, 9}, 100] (* Vincenzo Librandi, Jun 15 2016 *)

Formula

G.f.: x^2*(1+7*x+x^2) / ((1+x+x^2)*(x-1)^2). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, Jun 14 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = 3*n-3+2*cos(2*n*Pi/3)+2*sin(2*n*Pi/3)/sqrt(3).
a(3k) = 9k-1, a(3k-1) = 9k-8, a(3k-2) = 9k-9. (End)
A008591 UNION A056020. - R. J. Mathar, Jul 19 2024
a(n) -a(n-1) = A105395(n+1), n>1. - R. J. Mathar, Jul 19 2024

A054967 Numbers that are congruent to {0, 1, 9} mod 10.

Original entry on oeis.org

0, 1, 9, 10, 11, 19, 20, 21, 29, 30, 31, 39, 40, 41, 49, 50, 51, 59, 60, 61, 69, 70, 71, 79, 80, 81, 89, 90, 91, 99, 100, 101, 109, 110, 111, 119, 120, 121, 129, 130, 131, 139, 140, 141, 149, 150, 151, 159, 160, 161, 169, 170, 171, 179, 180, 181, 189, 190, 191, 199
Offset: 1

Views

Author

Henry Bottomley, May 24 2000

Keywords

Comments

Numbers with last digit 0, 1, or 9. - Wesley Ivan Hurt, Jun 14 2016

Crossrefs

Cf. A047523.

Programs

  • Magma
    [n: n in [0..200] | n mod 10 in [0,1,9]]; // Vincenzo Librandi, Feb 24 2016
  • Maple
    seq(seq(10*i+j, j=[0,1,9]), i=0..30); # Robert Israel, Feb 23 2016
  • Mathematica
    Select[Range[0, 200], MemberQ[{0, 1, 9}, Mod[#, 10]] &] (* or *) LinearRecurrence[{1, 0, 1, -1}, {0, 1, 9, 10}, 60] (* Vincenzo Librandi, Feb 24 2016 *)

Formula

G.f.: x^2*(x^2+8*x+1)/((x-1)^2*(x^2+x+1)). - Robert Israel, Feb 23 2016
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4. - Vincenzo Librandi, Feb 24 2016
From Wesley Ivan Hurt, Jun 14 2016: (Start)
a(n) = (30*n-30+21*cos(2*n*Pi/3)+7*sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 10k-1, a(3k-1) = 10k-9, a(3k-2) = 10k-10. (End)
Showing 1-2 of 2 results.