cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047528 Numbers that are congruent to {0, 3, 7} mod 8.

Original entry on oeis.org

0, 3, 7, 8, 11, 15, 16, 19, 23, 24, 27, 31, 32, 35, 39, 40, 43, 47, 48, 51, 55, 56, 59, 63, 64, 67, 71, 72, 75, 79, 80, 83, 87, 88, 91, 95, 96, 99, 103, 104, 107, 111, 112, 115, 119, 120, 123, 127, 128, 131, 135, 136, 139, 143, 144, 147, 151, 152, 155, 159
Offset: 1

Views

Author

Keywords

Programs

  • Magma
    [n : n in [0..150] | n mod 8 in [0, 3, 7]]; // Wesley Ivan Hurt, Jun 10 2016
  • Maple
    A047528:=n->8*n/3-2+cos(2*n*Pi/3)-sin(2*n*Pi/3)/(3*sqrt(3)): seq(A047528(n), n=1..100); # Wesley Ivan Hurt, Jun 10 2016
  • Mathematica
    Select[Range[0, 150], MemberQ[{0, 3, 7}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jun 10 2016 *)
    LinearRecurrence[{1,0,1,-1},{0,3,7,8},70] (* Harvey P. Dale, Jun 12 2019 *)

Formula

G.f.: x^2*(x+3)*(1+x) / ((1+x+x^2)*(x-1)^2). - R. J. Mathar, Jul 10 2015
From Wesley Ivan Hurt, Jun 10 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = 8*n/3-2+cos(2*n*Pi/3)-sin(2*n*Pi/3)/(3*sqrt(3)).
a(3k) = 8k-1, a(3k-1) = 8k-5, a(3k-2) = 8k-8. (End)