A047528 Numbers that are congruent to {0, 3, 7} mod 8.
0, 3, 7, 8, 11, 15, 16, 19, 23, 24, 27, 31, 32, 35, 39, 40, 43, 47, 48, 51, 55, 56, 59, 63, 64, 67, 71, 72, 75, 79, 80, 83, 87, 88, 91, 95, 96, 99, 103, 104, 107, 111, 112, 115, 119, 120, 123, 127, 128, 131, 135, 136, 139, 143, 144, 147, 151, 152, 155, 159
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
Programs
-
Magma
[n : n in [0..150] | n mod 8 in [0, 3, 7]]; // Wesley Ivan Hurt, Jun 10 2016
-
Maple
A047528:=n->8*n/3-2+cos(2*n*Pi/3)-sin(2*n*Pi/3)/(3*sqrt(3)): seq(A047528(n), n=1..100); # Wesley Ivan Hurt, Jun 10 2016
-
Mathematica
Select[Range[0, 150], MemberQ[{0, 3, 7}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jun 10 2016 *) LinearRecurrence[{1,0,1,-1},{0,3,7,8},70] (* Harvey P. Dale, Jun 12 2019 *)
Formula
G.f.: x^2*(x+3)*(1+x) / ((1+x+x^2)*(x-1)^2). - R. J. Mathar, Jul 10 2015
From Wesley Ivan Hurt, Jun 10 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = 8*n/3-2+cos(2*n*Pi/3)-sin(2*n*Pi/3)/(3*sqrt(3)).
a(3k) = 8k-1, a(3k-1) = 8k-5, a(3k-2) = 8k-8. (End)