A047530 Numbers that are congruent to {0, 1, 3, 7} mod 8.
0, 1, 3, 7, 8, 9, 11, 15, 16, 17, 19, 23, 24, 25, 27, 31, 32, 33, 35, 39, 40, 41, 43, 47, 48, 49, 51, 55, 56, 57, 59, 63, 64, 65, 67, 71, 72, 73, 75, 79, 80, 81, 83, 87, 88, 89, 91, 95, 96, 97, 99, 103, 104, 105, 107, 111, 112, 113, 115, 119, 120, 121, 123
Offset: 1
Links
- John C. Baez, The Octonions, Bull. Amer. Math. Soc., Vol. 39, No. 2 (2002), pp. 145-205; Errata, ibid., Vol. 42, No. 2 (2005), p. 213; alternative link.
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
Maple
A047530 := proc(n): ceil(n/4) + 2*ceil((n-1)/4) + 4*ceil((n-2)/4) + ceil((n-3)/4) end: seq(A047530(n), n=0..47); # Johannes W. Meijer, Jun 07 2011 A047530:=n->(8*n-9+I^(2*n)+(2+I)*I^(-n)+(2-I)*I^n)/4: seq(A047530(n), n=1..100); # Wesley Ivan Hurt, May 21 2016
-
Mathematica
Table[(8n-9+I^(2n)+(2+I)*I^(-n)+(2-I)*I^n)/4, {n, 80}] (* Wesley Ivan Hurt, May 21 2016 *)
-
PARI
a(n)=n>>2<<3+[-1,0,1,3][n%4+1] \\ Charles R Greathouse IV, Jun 09 2011
Formula
From Johannes W. Meijer, Jun 07 2011: (Start)
a(n) = ceiling(n/4) + 2*ceiling((n-1)/4) + 4*ceiling((n-2)/4) + ceiling((n-3)/4).
a(n+1) = A053381(2^p). (End)
G.f.: x^2*(1+2*x+4*x^2+x^3) / ((1+x)*(x^2+1)*(x-1)^2). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, May 21 2016: (Start)
a(n) = a(n-1)+a(n-4)-a(n-5) for n>5.
a(n) = (8n-9+i^(2n)+(2+i)*i^(-n)+(2-i)*i^n)/4, where i=sqrt(-1).
E.g.f.: (2 + sin(x) + 2*cos(x) + (4*x - 5)*sinh(x) + 4*(x - 1)*cosh(x))/2. - Ilya Gutkovskiy, May 21 2016
Sum_{n>=2} (-1)^n/a(n) = (8-3*sqrt(2))*log(2)/16 + 3*sqrt(2)*log(2+sqrt(2))/8 - (sqrt(2)-1)*Pi/16. - Amiram Eldar, Dec 20 2021
Extensions
More terms from Wesley Ivan Hurt, May 21 2016
Comments