cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A053381 Maximal number of linearly independent smooth nowhere-zero vector fields on a (2n+1)-sphere.

Original entry on oeis.org

1, 3, 1, 7, 1, 3, 1, 8, 1, 3, 1, 7, 1, 3, 1, 9, 1, 3, 1, 7, 1, 3, 1, 8, 1, 3, 1, 7, 1, 3, 1, 11, 1, 3, 1, 7, 1, 3, 1, 8, 1, 3, 1, 7, 1, 3, 1, 9, 1, 3, 1, 7, 1, 3, 1, 8, 1, 3, 1, 7, 1, 3, 1, 15, 1, 3, 1, 7, 1, 3, 1, 8, 1, 3, 1, 7, 1, 3, 1, 9, 1, 3, 1, 7, 1, 3, 1, 8, 1, 3, 1, 7, 1, 3, 1, 11, 1, 3, 1, 7, 1, 3
Offset: 0

Views

Author

Warren D. Smith, Jan 06 2000

Keywords

Comments

The corresponding terms for a 2n-sphere are all 0 ("you can't comb the hair on a billiard ball"). The "3" and "7" come from the quaternions and octonions.
b(n) = a(n-1): b(2^e) = ((e+1) idiv 4) + 2^((e+1) mod 4) - 1, b(p^e) = 1, p>2. - Christian G. Bower, May 18 2005
a(n-1) is multiplicative. - Christian G. Bower, Jun 03 2005

Crossrefs

For another version see A003484. Cf. A189995, A001676.

Programs

  • C
    int MaxLinInd(int n){ /* Returns max # linearly indep smooth nowhere zero * vector fields on S^{n-1}, n=1,2,... */ int b,c,d,rho; b = 0; while((n & 1)==0){ n /= 2; b++; } c = b & 3; d = (b - c)/4; rho = (1 << c) + 8*d; return( rho - 1); }
    
  • C
    int MaxLinInd(int n) { int b = _builtin_ctz(n); return (1<<b%4) + b/4*8 - 1; } /* _Jeremy Tan, Apr 09 2021 */
  • Maple
    with(numtheory): for n from 1 to 601 by 2 do c := irem(ifactors(n+1)[2,1,2],4): d := iquo(ifactors(n+1)[2,1,2],4): printf(`%d,`, 2^c+8*d-1) od:
    nmax:=101: A047530 := proc(n): ceil(n/4) + 2*ceil((n-1)/4) + 4*ceil((n-2)/4) + ceil((n-3)/4) end: for p from 0 to ceil(simplify(log[2](nmax))) do for n from 0 to ceil(nmax/(p+2))+1 do A053381((2*n+1)*2^p-1) := A047530(p+1): od: od: seq(A053381(n), n=0..nmax); # Johannes W. Meijer, Jun 07 2011, revised Jan 29 2013
  • Mathematica
    a[n_] := Module[{b, c, d, rho, n0}, n0 = 2*n; b = 0; While[BitAnd[n0, 1] == 0, n0 /= 2; b++]; c = BitAnd[b, 3]; d = (b - c)/4; rho = 2^c + 8*d; Return[rho - 1]]; Table[a[n], {n, 1, 102}] (* Jean-François Alcover, May 16 2013, translated from C *)

Formula

Let f(n) be the number of linearly independent smooth nowhere-zero vector fields on an n-sphere. Then f(n) = 2^c + 8d - 1 where n+1 = (2a+1) 2^b and b = c+4d and 0 <= c <= 3. f(n) = 0 if n is even.
a((2*n+1)*2^p-1) = A047530(p+1), p >= 0 and n >= 0. a(2*n) = 1, n >= 0, and a(2^p-1) = A047530(p+1), p >= 0. - Johannes W. Meijer, Jun 07 2011
a(n) = A209675(n+1) - 1. - Reinhard Zumkeller, Mar 11 2012
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 10/3. - Amiram Eldar, Nov 29 2022

Extensions

More terms from James Sellers, Jun 01 2000

A195679 Order of n-th homotopy group of the topological group O(oo), with -1 if the homotopy group is Z.

Original entry on oeis.org

2, 2, 1, -1, 1, 1, 1, -1, 2, 2, 1, -1, 1, 1, 1, -1, 2, 2, 1, -1, 1, 1, 1, -1, 2, 2, 1, -1, 1, 1, 1, -1, 2, 2, 1, -1, 1, 1, 1, -1, 2, 2, 1, -1, 1, 1, 1, -1, 2, 2, 1, -1, 1, 1, 1, -1, 2, 2, 1, -1, 1, 1, 1, -1, 2, 2, 1, -1, 1, 1, 1, -1, 2, 2, 1, -1, 1, 1, 1, -1, 2, 2, 1, -1, 1, 1, 1, -1, 2, 2, 1, -1, 1, 1, 1, -1, 2, 2, 1, -1, 1, 1, 1, -1, 2, 2, 1, -1, 1, 1, 1, -1, 2, 2, 1, -1, 1, 1, 1, -1
Offset: 0

Views

Author

N. J. A. Sloane, Sep 22 2011

Keywords

Comments

Computed by R. Bott in 1957. Periodic with period 8.

Crossrefs

Cf. A047530.

Programs

  • Mathematica
    LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 1},{2, 2, 1, -1, 1, 1, 1, -1},128] (* Ray Chandler, Aug 25 2015 *)
  • PARI
    Vec((1 + x + x^2)*(2 - x^2 + 2*x^4 - x^5) / ((1 - x)*(1 + x)*(1 + x^2)*(1 + x^4)) + O(x^100)) \\ Colin Barker, Aug 28 2019

Formula

From Colin Barker, Aug 28 2019: (Start)
G.f.: (1 + x + x^2)*(2 - x^2 + 2*x^4 - x^5) / ((1 - x)*(1 + x)*(1 + x^2)*(1 + x^4)).
a(n) = a(n-8) for n>7.
(End)

Extensions

Corrected by Harry Richman, Aug 27 2019
Showing 1-2 of 2 results.