A047533 Numbers that are congruent to {1, 2, 3, 7} mod 8.
1, 2, 3, 7, 9, 10, 11, 15, 17, 18, 19, 23, 25, 26, 27, 31, 33, 34, 35, 39, 41, 42, 43, 47, 49, 50, 51, 55, 57, 58, 59, 63, 65, 66, 67, 71, 73, 74, 75, 79, 81, 82, 83, 87, 89, 90, 91, 95, 97, 98, 99, 103, 105, 106, 107, 111, 113, 114, 115, 119, 121, 122, 123
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
Magma
[n : n in [0..150] | n mod 8 in [1, 2, 3, 7]]; // Wesley Ivan Hurt, May 29 2016
-
Maple
A047533:=n->(8*n-7+I^(2*n)+(1+2*I)*I^(-n)+(1-2*I)*I^n)/4: seq(A047533(n), n=1..100); # Wesley Ivan Hurt, May 29 2016
-
Mathematica
Table[(8n-7+I^(2n)+(1+2*I)*I^(-n)+(1-2*I)*I^n)/4, {n, 80}] (* Wesley Ivan Hurt, May 29 2016 *) LinearRecurrence[{1, 0, 0, 1, -1}, {1, 2, 3, 7, 9}, 50] (* G. C. Greubel, May 29 2016 *)
Formula
From Wesley Ivan Hurt, May 29 2016: (Start)
G.f.: x*(1+x+x^2+4*x^3+x^4) / ((x-1)^2*(1+x+x^2+x^3)).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (8*n-7+i^(2*n)+(1+2*i)*i^(-n)+(1-2*i)*i^n)/4 where i=sqrt(-1).
E.g.f.: (2 + 2*sin(x) + cos(x) + 4*(x - 1)*sinh(x) + (4*x - 3)*cosh(x))/2. - Ilya Gutkovskiy, May 29 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*sqrt(2)*Pi/16 + log(2)/8 + sqrt(2)*log(3-2*sqrt(2))/16. - Amiram Eldar, Dec 23 2021