A047541 Numbers that are congruent to {1, 2, 4, 7} mod 8.
1, 2, 4, 7, 9, 10, 12, 15, 17, 18, 20, 23, 25, 26, 28, 31, 33, 34, 36, 39, 41, 42, 44, 47, 49, 50, 52, 55, 57, 58, 60, 63, 65, 66, 68, 71, 73, 74, 76, 79, 81, 82, 84, 87, 89, 90, 92, 95, 97, 98, 100, 103, 105, 106, 108, 111, 113, 114, 116, 119, 121, 122, 124
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (2,-2,2,-1).
Programs
-
Magma
[n : n in [0..150] | n mod 8 in [1, 2, 4, 7]]; // Wesley Ivan Hurt, Jun 04 2016
-
Maple
A047541:=n->(1+I)*(n*(4-4*I)+3*I-3+I^(-n)-I^(1+n))/4: seq(A047541(n), n=1..100); # Wesley Ivan Hurt, Jun 04 2016
-
Mathematica
Table[(1+I)*(n*(4-4*I)+3*I-3+I^(-n)-I^(1+n))/4, {n, 80}] (* Wesley Ivan Hurt, Jun 04 2016 *) Select[Range[200],MemberQ[{1,2,4,7},Mod[#,8]]&] (* or *) LinearRecurrence[ {2,-2,2,-1},{1,2,4,7},70] (* Harvey P. Dale, Jul 09 2020 *)
-
PARI
a(n)=n\4*8+[-1,1,2,4][n%4+1] \\ Charles R Greathouse IV, Nov 04 2011
Formula
From Wesley Ivan Hurt, Jun 04 2016: (Start)
G.f.: x*(1+2*x^2+x^3)/(x-1)^2*(1+x^2).
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4) for n>4.
a(n) = (1+i)*(n*(4-4*i)+3*i-3+i^(-n)-i^(1+n))/4 where i=sqrt(-1).
E.g.f.: (2 + sin(x) + cos(x) + (4*x - 3)*exp(x))/2. - Ilya Gutkovskiy, Jun 04 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = (2*sqrt(2)+1)*Pi/16 - log(2)/8. - Amiram Eldar, Dec 24 2021