A047553 Numbers that are congruent to {0, 2, 6, 7} mod 8.
0, 2, 6, 7, 8, 10, 14, 15, 16, 18, 22, 23, 24, 26, 30, 31, 32, 34, 38, 39, 40, 42, 46, 47, 48, 50, 54, 55, 56, 58, 62, 63, 64, 66, 70, 71, 72, 74, 78, 79, 80, 82, 86, 87, 88, 90, 94, 95, 96, 98, 102, 103, 104, 106, 110, 111, 112, 114, 118, 119, 120, 122, 126
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
Magma
[n : n in [0..150] | n mod 8 in [0, 2, 6, 7]]; // Wesley Ivan Hurt, May 29 2016
-
Maple
A047553:=n->(8*n-5-I^(2*n)+(1-2*I)*I^(-n)+(1+2*I)*I^n)/4: seq(A047553(n), n=1..100); # Wesley Ivan Hurt, May 29 2016
-
Mathematica
Select[Range[0,200], MemberQ[{0,2,6,7}, Mod[#,8]]&] (* Harvey P. Dale, Aug 09 2013 *)
Formula
From Wesley Ivan Hurt, May 29 2016: (Start)
G.f.: x^2*(2+4*x+x^2+x^3) / ((x-1)^2*(1+x+x^2+x^3)).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (8*n-5-i^(2*n)+(1-2*i)*i^(-n)+(1+2*i)*i^n)/4 where i=sqrt(-1).
E.g.f.: (2 - 2*sin(x) + cos(x) + (4*x - 2)*sinh(x) + (4*x - 3)*cosh(x))/2. - Ilya Gutkovskiy, May 29 2016
Sum_{n>=2} (-1)^n/a(n) = (8-sqrt(2))*log(2)/16 + sqrt(2)*log(2+sqrt(2))/8 - (sqrt(2)-1)*Pi/16. - Amiram Eldar, Dec 21 2021