cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047553 Numbers that are congruent to {0, 2, 6, 7} mod 8.

Original entry on oeis.org

0, 2, 6, 7, 8, 10, 14, 15, 16, 18, 22, 23, 24, 26, 30, 31, 32, 34, 38, 39, 40, 42, 46, 47, 48, 50, 54, 55, 56, 58, 62, 63, 64, 66, 70, 71, 72, 74, 78, 79, 80, 82, 86, 87, 88, 90, 94, 95, 96, 98, 102, 103, 104, 106, 110, 111, 112, 114, 118, 119, 120, 122, 126
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n : n in [0..150] | n mod 8 in [0, 2, 6, 7]]; // Wesley Ivan Hurt, May 29 2016
  • Maple
    A047553:=n->(8*n-5-I^(2*n)+(1-2*I)*I^(-n)+(1+2*I)*I^n)/4: seq(A047553(n), n=1..100); # Wesley Ivan Hurt, May 29 2016
  • Mathematica
    Select[Range[0,200], MemberQ[{0,2,6,7}, Mod[#,8]]&] (* Harvey P. Dale, Aug 09 2013 *)

Formula

From Wesley Ivan Hurt, May 29 2016: (Start)
G.f.: x^2*(2+4*x+x^2+x^3) / ((x-1)^2*(1+x+x^2+x^3)).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (8*n-5-i^(2*n)+(1-2*i)*i^(-n)+(1+2*i)*i^n)/4 where i=sqrt(-1).
a(2k) = A047524(k), a(2k-1) = A047451(k). (End)
E.g.f.: (2 - 2*sin(x) + cos(x) + (4*x - 2)*sinh(x) + (4*x - 3)*cosh(x))/2. - Ilya Gutkovskiy, May 29 2016
Sum_{n>=2} (-1)^n/a(n) = (8-sqrt(2))*log(2)/16 + sqrt(2)*log(2+sqrt(2))/8 - (sqrt(2)-1)*Pi/16. - Amiram Eldar, Dec 21 2021