cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A047587 Numbers that are congruent to {0, 2, 3, 5, 6, 7} mod 8.

Original entry on oeis.org

0, 2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 18, 19, 21, 22, 23, 24, 26, 27, 29, 30, 31, 32, 34, 35, 37, 38, 39, 40, 42, 43, 45, 46, 47, 48, 50, 51, 53, 54, 55, 56, 58, 59, 61, 62, 63, 64, 66, 67, 69, 70, 71, 72, 74, 75, 77, 78, 79, 80, 82, 83, 85, 86, 87
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n : n in [0..100] | n mod 8 in [0, 2, 3, 5, 6, 7]]; // Wesley Ivan Hurt, Jun 16 2016
  • Maple
    A047587:=n->(24*n-15+3*cos(n*Pi)-2*sqrt(3)*cos((1-4*n)*Pi/6)-6*sin((1+2*n)*Pi/6))/18: seq(A047587(n), n=1..100); # Wesley Ivan Hurt, Jun 16 2016
  • Mathematica
    Select[Range[0,150], MemberQ[{0,2,3,5,6,7}, Mod[#,8]]&] (* Harvey P. Dale, Oct 04 2011 *)

Formula

From Wesley Ivan Hurt, Jun 16 2016: (Start)
G.f.: x^2*(2+x+2*x^2+x^3+x^4+x^5)/((x-1)^2*(1+x+x^2+x^3+x^4+x^5)).
a(n) = a(n-1) + a(n-6) - a(n-7) for n>7.
a(n) = (24*n-15+3*cos(n*Pi)-2*sqrt(3)*cos((1-4*n)*Pi/6)-6*sin((1+2*n)*Pi/6))/18.
a(6k) = 8k-1, a(6k-1) = 8k-2, a(6k-2) = 8k-3, a(6k-3) = 8k-5, a(6k-4) = 8k-6, a(6k-5) = 8k-8. (End)
Sum_{n>=2} (-1)^n/a(n) = (8-sqrt(2))*log(2)/16 + sqrt(2)*log(sqrt(2)+2)/8 - 3*(sqrt(2)-1)*Pi/16. - Amiram Eldar, Dec 27 2021

A047563 Numbers that are congruent to {0, 3, 4, 5, 6, 7} mod 8.

Original entry on oeis.org

0, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 35, 36, 37, 38, 39, 40, 43, 44, 45, 46, 47, 48, 51, 52, 53, 54, 55, 56, 59, 60, 61, 62, 63, 64, 67, 68, 69, 70, 71, 72, 75, 76, 77, 78, 79, 80, 83, 84, 85, 86, 87
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A047571.

Programs

  • Magma
    [n : n in [0..100] | n mod 8 in [0] cat [3..7]]; // Wesley Ivan Hurt, May 29 2016
  • Maple
    A047563:=n->(24*n-9+3*cos(n*Pi)-12*cos(n*Pi/3)-4*sqrt(3)*sin(2*n*Pi/3))/18: seq(A047563(n), n=1..100); # Wesley Ivan Hurt, Jun 16 2016
  • Mathematica
    LinearRecurrence[{1, 0, 0, 0, 0, 1, -1}, {0, 3, 4, 5, 6, 7, 8}, 50] (* G. C. Greubel, May 29 2016 *)

Formula

From Chai Wah Wu, May 29 2016: (Start)
a(n) = a(n-1) + a(n-6) - a(n-7) for n>7.
G.f.: x^2*(x^5 + x^4 + x^3 + x^2 + x + 3)/(x^7 - x^6 - x + 1). (End)
From Wesley Ivan Hurt, Jun 16 2016: (Start)
a(n) = (24*n-9+3*cos(n*Pi)-12*cos(n*Pi/3)-4*sqrt(3)*sin(2*n*Pi/3))/18.
a(6k) = 8k-1, a(6k-1) = 8k-2, a(6k-2) = 8k-3, a(6k-3) = 8k-4, a(6k-4) = 8k-5, a(6k-5) = 8k-8. (End)
Sum_{n>=2} (-1)^n/a(n) = 7*log(2)/8 + sqrt(2)*log(3-2*sqrt(2))/16 - sqrt(2)*Pi/16. - Amiram Eldar, Dec 27 2021
Showing 1-2 of 2 results.