A047581 Numbers that are congruent to {0, 1, 2, 5, 6, 7} mod 8.
0, 1, 2, 5, 6, 7, 8, 9, 10, 13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 25, 26, 29, 30, 31, 32, 33, 34, 37, 38, 39, 40, 41, 42, 45, 46, 47, 48, 49, 50, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 65, 66, 69, 70, 71, 72, 73, 74, 77, 78, 79, 80, 81, 82, 85, 86, 87, 88
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,1,-1).
Programs
-
Magma
[n : n in [0..100] | n mod 8 in [0, 1, 2, 5, 6, 7]]; // Wesley Ivan Hurt, Jun 16 2016
-
Maple
A047581:=n->(8*n+(-1)^n-2*sqrt(3)*sin(Pi*n/3)-4*sin(2*Pi*(n+1)/3)/sqrt(3) +2*cos(Pi*n/3)-7)/6: seq(A047581(n), n=1..100); # Wesley Ivan Hurt, Jun 16 2016
-
Mathematica
LinearRecurrence[{1, 0, 0, 0, 0, 1, -1}, {0, 1, 2, 5, 6, 7, 8}, 50] (* G. C. Greubel, May 30 2016 *)
Formula
From Chai Wah Wu, May 30 2016: (Start)
a(n) = a(n-1) + a(n-6) - a(n-7) for n>7.
G.f.: x^2*(x^5 + x^4 + x^3 + 3*x^2 + x + 1)/(x^7 - x^6 - x + 1). (End)
a(n) = (8*n + (-1)^n - 2*sqrt(3)*sin(Pi*n/3) - 4*sin(2*Pi*(n+1)/3)/sqrt(3) + 2*cos(Pi*n/3) - 7)/6. - Ilya Gutkovskiy, May 30 2016
a(6k) = 8k-1, a(6k-1) = 8k-2, a(6k-2) = 8k-3, a(6k-3) = 8k-6, a(6k-4) = 8k-7, a(6k-5) = 8k-8. - Wesley Ivan Hurt, Jun 16 2016
Sum_{n>=2} (-1)^n/a(n) = (12-sqrt(2))*log(2)/16 + sqrt(2)*log(sqrt(2)+2)/8 - (sqrt(2)-1)*Pi/16. - Amiram Eldar, Dec 27 2021