cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047581 Numbers that are congruent to {0, 1, 2, 5, 6, 7} mod 8.

Original entry on oeis.org

0, 1, 2, 5, 6, 7, 8, 9, 10, 13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 25, 26, 29, 30, 31, 32, 33, 34, 37, 38, 39, 40, 41, 42, 45, 46, 47, 48, 49, 50, 53, 54, 55, 56, 57, 58, 61, 62, 63, 64, 65, 66, 69, 70, 71, 72, 73, 74, 77, 78, 79, 80, 81, 82, 85, 86, 87, 88
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n : n in [0..100] | n mod 8 in [0, 1, 2, 5, 6, 7]]; // Wesley Ivan Hurt, Jun 16 2016
  • Maple
    A047581:=n->(8*n+(-1)^n-2*sqrt(3)*sin(Pi*n/3)-4*sin(2*Pi*(n+1)/3)/sqrt(3)
    +2*cos(Pi*n/3)-7)/6: seq(A047581(n), n=1..100); # Wesley Ivan Hurt, Jun 16 2016
  • Mathematica
    LinearRecurrence[{1, 0, 0, 0, 0, 1, -1}, {0, 1, 2, 5, 6, 7, 8}, 50] (* G. C. Greubel, May 30 2016 *)

Formula

From Chai Wah Wu, May 30 2016: (Start)
a(n) = a(n-1) + a(n-6) - a(n-7) for n>7.
G.f.: x^2*(x^5 + x^4 + x^3 + 3*x^2 + x + 1)/(x^7 - x^6 - x + 1). (End)
a(n) = (8*n + (-1)^n - 2*sqrt(3)*sin(Pi*n/3) - 4*sin(2*Pi*(n+1)/3)/sqrt(3) + 2*cos(Pi*n/3) - 7)/6. - Ilya Gutkovskiy, May 30 2016
a(6k) = 8k-1, a(6k-1) = 8k-2, a(6k-2) = 8k-3, a(6k-3) = 8k-6, a(6k-4) = 8k-7, a(6k-5) = 8k-8. - Wesley Ivan Hurt, Jun 16 2016
Sum_{n>=2} (-1)^n/a(n) = (12-sqrt(2))*log(2)/16 + sqrt(2)*log(sqrt(2)+2)/8 - (sqrt(2)-1)*Pi/16. - Amiram Eldar, Dec 27 2021