cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047589 Numbers that are congruent to {6, 7} mod 8.

Original entry on oeis.org

6, 7, 14, 15, 22, 23, 30, 31, 38, 39, 46, 47, 54, 55, 62, 63, 70, 71, 78, 79, 86, 87, 94, 95, 102, 103, 110, 111, 118, 119, 126, 127, 134, 135, 142, 143, 150, 151, 158, 159, 166, 167, 174, 175, 182, 183, 190, 191, 198, 199, 206, 207, 214, 215, 222, 223, 230, 231
Offset: 1

Views

Author

Keywords

Comments

These are the values of n for which binomial(n,6) is odd. See Maple code. - Gary Detlefs, Nov 29 2011

Crossrefs

Union of A017137 and A004771.

Programs

  • Maple
    for i from 1 to 240 do if(floor((i mod 8)/6) <>0) then print(i) fi od; # Gary Detlefs, Nov 30 2011
  • Mathematica
    LinearRecurrence[{1,1,-1},{6,7,14},60] (* Harvey P. Dale, Sep 11 2017 *)

Formula

a(n) = 8*n-a(n-1)-3 with n>1, a(1)=6. - Vincenzo Librandi, Aug 06 2010
a(n) = 6*floor((n-1)/2) + n + 5. - Gary Detlefs, Nov 29 2011
a(n) = a(n-1)+a(n-2)-a(n-3). G.f.: x*(6+x+x^2)/((1-x)^2*(1+x)). - Colin Barker, Mar 18 2012
a(n) = (1-3*(-1)^n+8*n)/2. - Colin Barker, May 14 2012
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(2)*Pi/16 - log(2)/8 - sqrt(2)*log(sqrt(2)+1)/8. - Amiram Eldar, Dec 18 2021