A047589 Numbers that are congruent to {6, 7} mod 8.
6, 7, 14, 15, 22, 23, 30, 31, 38, 39, 46, 47, 54, 55, 62, 63, 70, 71, 78, 79, 86, 87, 94, 95, 102, 103, 110, 111, 118, 119, 126, 127, 134, 135, 142, 143, 150, 151, 158, 159, 166, 167, 174, 175, 182, 183, 190, 191, 198, 199, 206, 207, 214, 215, 222, 223, 230, 231
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Programs
-
Maple
for i from 1 to 240 do if(floor((i mod 8)/6) <>0) then print(i) fi od; # Gary Detlefs, Nov 30 2011
-
Mathematica
LinearRecurrence[{1,1,-1},{6,7,14},60] (* Harvey P. Dale, Sep 11 2017 *)
Formula
a(n) = 8*n-a(n-1)-3 with n>1, a(1)=6. - Vincenzo Librandi, Aug 06 2010
a(n) = 6*floor((n-1)/2) + n + 5. - Gary Detlefs, Nov 29 2011
a(n) = a(n-1)+a(n-2)-a(n-3). G.f.: x*(6+x+x^2)/((1-x)^2*(1+x)). - Colin Barker, Mar 18 2012
a(n) = (1-3*(-1)^n+8*n)/2. - Colin Barker, May 14 2012
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(2)*Pi/16 - log(2)/8 - sqrt(2)*log(sqrt(2)+1)/8. - Amiram Eldar, Dec 18 2021
Comments