cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047595 Numbers that are congruent to {0, 1, 2, 3, 4, 5, 7} mod 8.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75
Offset: 1

Views

Author

Keywords

Comments

Complement of A017137. - Michel Marcus, Sep 15 2015

Crossrefs

Cf. A017137 (8n+6).

Programs

  • Magma
    [n-1+Floor(n/7) : n in [1..100]]; // Wesley Ivan Hurt, Sep 15 2015
    
  • Magma
    I:=[0,1,2,3,4,5,7,8]; [n le 8 select I[n] else Self(n-1) + Self(n-7) - Self(n-8): n in [1..70]]; // Vincenzo Librandi, Sep 16 2015
    
  • Maple
    A047595:=n->n-1+floor(n/7): seq(A047595(n), n=1..100); # Wesley Ivan Hurt, Sep 15 2015
  • Mathematica
    Table[n - 1 + Floor[n/7], {n, 100}] (* Wesley Ivan Hurt, Sep 15 2015 *)
    LinearRecurrence[{1, 0, 0, 0, 0, 0, 1, -1}, {0, 1, 2, 3, 4, 5, 7, 8}, 70] (* Vincenzo Librandi, Sep 16 2015 *)
  • PARI
    vector(200, n, n-1+floor(n/7)) \\ Altug Alkan, Oct 23 2015

Formula

From Wesley Ivan Hurt, Sep 15 2015: (Start)
G.f.: x*(1+x+x^2+x^3+x^4+2*x^5+x^6)/((x-1)^2*(1+x+x^2+x^3+x^4+x^5+x^6)).
a(n) = a(n-1) + a(n-7) - a(n-8) for n>8.
a(n) = n - 1 + floor(n/7). (End)
From Wesley Ivan Hurt, Jul 21 2016: (Start)
a(n) = a(n-7) + 8 for n>7.
a(n) = (56*n - 70 - 6*(n mod 7) + ((n+1) mod 7) + ((n+2) mod 7) + ((n+3) mod 7) + ((n+4) mod 7) + ((n+5) mod 7) + ((n+6) mod 7))/49.
a(7*k) = 8*k-1, a(7*k-1) = 8*k-3, a(7*k-2) = 8*k-4, a(7*k-3) = 8*k-5, a(7*k-4) = 8*k-6, a(7*k-5) = 8*k-7, a(7*k-6) = 8*k-8. (End)