A047595 Numbers that are congruent to {0, 1, 2, 3, 4, 5, 7} mod 8.
0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,1,-1).
Crossrefs
Cf. A017137 (8n+6).
Programs
-
Magma
[n-1+Floor(n/7) : n in [1..100]]; // Wesley Ivan Hurt, Sep 15 2015
-
Magma
I:=[0,1,2,3,4,5,7,8]; [n le 8 select I[n] else Self(n-1) + Self(n-7) - Self(n-8): n in [1..70]]; // Vincenzo Librandi, Sep 16 2015
-
Maple
A047595:=n->n-1+floor(n/7): seq(A047595(n), n=1..100); # Wesley Ivan Hurt, Sep 15 2015
-
Mathematica
Table[n - 1 + Floor[n/7], {n, 100}] (* Wesley Ivan Hurt, Sep 15 2015 *) LinearRecurrence[{1, 0, 0, 0, 0, 0, 1, -1}, {0, 1, 2, 3, 4, 5, 7, 8}, 70] (* Vincenzo Librandi, Sep 16 2015 *)
-
PARI
vector(200, n, n-1+floor(n/7)) \\ Altug Alkan, Oct 23 2015
Formula
From Wesley Ivan Hurt, Sep 15 2015: (Start)
G.f.: x*(1+x+x^2+x^3+x^4+2*x^5+x^6)/((x-1)^2*(1+x+x^2+x^3+x^4+x^5+x^6)).
a(n) = a(n-1) + a(n-7) - a(n-8) for n>8.
a(n) = n - 1 + floor(n/7). (End)
From Wesley Ivan Hurt, Jul 21 2016: (Start)
a(n) = a(n-7) + 8 for n>7.
a(n) = (56*n - 70 - 6*(n mod 7) + ((n+1) mod 7) + ((n+2) mod 7) + ((n+3) mod 7) + ((n+4) mod 7) + ((n+5) mod 7) + ((n+6) mod 7))/49.
a(7*k) = 8*k-1, a(7*k-1) = 8*k-3, a(7*k-2) = 8*k-4, a(7*k-3) = 8*k-5, a(7*k-4) = 8*k-6, a(7*k-5) = 8*k-7, a(7*k-6) = 8*k-8. (End)
Comments