A047613 Numbers that are congruent to {1, 2, 4, 5} mod 8.
1, 2, 4, 5, 9, 10, 12, 13, 17, 18, 20, 21, 25, 26, 28, 29, 33, 34, 36, 37, 41, 42, 44, 45, 49, 50, 52, 53, 57, 58, 60, 61, 65, 66, 68, 69, 73, 74, 76, 77, 81, 82, 84, 85, 89, 90, 92, 93, 97, 98, 100, 101, 105, 106, 108, 109, 113, 114, 116, 117, 121, 122, 124
Offset: 1
Links
- Bruno Berselli, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
Magma
[n: n in [1..120] | n mod 8 in [1,2,4,5]];
-
Maple
A047613:=n->2*n-2-(I^(2*n)+I^(n*(n+1)))/2: seq(A047613(n), n=1..100); # Wesley Ivan Hurt, Jun 02 2016
-
Mathematica
Select[Range[120], MemberQ[{1, 2, 4, 5}, Mod[#, 8]] &] (* or *) LinearRecurrence[{1, 0, 0, 1, -1}, {1, 2, 4, 5, 9}, 60] (* Bruno Berselli, Jul 17 2012 *)
-
Maxima
makelist(2*n-2-((-1)^n+%i^(n*(n+1)))/2,n,1,60);
-
PARI
Vec((1+x+2*x^2+x^3+3*x^4)/((1+x)*(1-x)^2*(1+x^2))+O(x^60)) (End)
Formula
From Bruno Berselli, Jul 17 2012: (Start)
G.f.: x*(1+x+2*x^2+x^3+3*x^4)/((1+x)*(1-x)^2*(1+x^2)).
a(n) = 2*n-2-((-1)^n+i^(n*(n+1)))/2, where i=sqrt(-1). (End)
From Wesley Ivan Hurt, Jun 02 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
E.g.f.: (6 + sin(x) - cos(x) + (4*x - 3)*sinh(x) + (4*x - 5)*cosh(x))/2. - Ilya Gutkovskiy, Jun 02 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = (2*sqrt(2)-1)*Pi/16 + sqrt(2)*log(sqrt(2)+2)/4 - (sqrt(2)+1)*log(2)/8. - Amiram Eldar, Dec 23 2021