A047619 Numbers that are congruent to {1, 2, 5} mod 8.
1, 2, 5, 9, 10, 13, 17, 18, 21, 25, 26, 29, 33, 34, 37, 41, 42, 45, 49, 50, 53, 57, 58, 61, 65, 66, 69, 73, 74, 77, 81, 82, 85, 89, 90, 93, 97, 98, 101, 105, 106, 109, 113, 114, 117, 121, 122, 125, 129, 130, 133, 137, 138, 141, 145, 146, 149, 153, 154, 157
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..3000
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
Programs
-
Magma
[n : n in [0..150] | n mod 8 in [1, 2, 5]]; // Wesley Ivan Hurt, Jun 09 2016
-
Maple
A047619:=n->(24*n-24-3*cos(2*n*Pi/3)+5*sqrt(3)*sin(2*n*Pi/3))/9: seq(A047619(n), n=1..100); # Wesley Ivan Hurt, Jun 09 2016
-
Mathematica
Select[Range[0, 150], MemberQ[{1, 2, 5}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jun 09 2016 *) Table[8 n + {1, 2, 5}, {n, 0, 100}]//Flatten (* Vincenzo Librandi, Jun 11 2016 *) LinearRecurrence[{1,0,1,-1},{1,2,5,9},70] (* Harvey P. Dale, Aug 30 2021 *)
Formula
From Wesley Ivan Hurt, Jun 09 2016: (Start)
G.f.: x*(1+x+3*x^2+3*x^3)/((x-1)^2*(1+x+x^2)).
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (24*n-24-3*cos(2*n*Pi/3)+5*sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 8k-3, a(3k-1) = 8k-6, a(3k-2) = 8k-7. (End)