cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047619 Numbers that are congruent to {1, 2, 5} mod 8.

Original entry on oeis.org

1, 2, 5, 9, 10, 13, 17, 18, 21, 25, 26, 29, 33, 34, 37, 41, 42, 45, 49, 50, 53, 57, 58, 61, 65, 66, 69, 73, 74, 77, 81, 82, 85, 89, 90, 93, 97, 98, 101, 105, 106, 109, 113, 114, 117, 121, 122, 125, 129, 130, 133, 137, 138, 141, 145, 146, 149, 153, 154, 157
Offset: 1

Views

Author

Keywords

Programs

  • Magma
    [n : n in [0..150] | n mod 8 in [1, 2, 5]]; // Wesley Ivan Hurt, Jun 09 2016
  • Maple
    A047619:=n->(24*n-24-3*cos(2*n*Pi/3)+5*sqrt(3)*sin(2*n*Pi/3))/9: seq(A047619(n), n=1..100); # Wesley Ivan Hurt, Jun 09 2016
  • Mathematica
    Select[Range[0, 150], MemberQ[{1, 2, 5}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jun 09 2016 *)
    Table[8 n + {1, 2, 5}, {n, 0, 100}]//Flatten (* Vincenzo Librandi, Jun 11 2016 *)
    LinearRecurrence[{1,0,1,-1},{1,2,5,9},70] (* Harvey P. Dale, Aug 30 2021 *)

Formula

From Wesley Ivan Hurt, Jun 09 2016: (Start)
G.f.: x*(1+x+3*x^2+3*x^3)/((x-1)^2*(1+x+x^2)).
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (24*n-24-3*cos(2*n*Pi/3)+5*sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 8k-3, a(3k-1) = 8k-6, a(3k-2) = 8k-7. (End)