A047620 Numbers that are congruent to {0, 1, 2, 5} mod 8.
0, 1, 2, 5, 8, 9, 10, 13, 16, 17, 18, 21, 24, 25, 26, 29, 32, 33, 34, 37, 40, 41, 42, 45, 48, 49, 50, 53, 56, 57, 58, 61, 64, 65, 66, 69, 72, 73, 74, 77, 80, 81, 82, 85, 88, 89, 90, 93, 96, 97, 98, 101, 104, 105, 106, 109, 112, 113, 114, 117, 120, 121, 122
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (2,-2,2,-1).
Programs
-
Magma
[n : n in [0..150] | n mod 8 in [0, 1, 2, 5]]; // Wesley Ivan Hurt, May 22 2016
-
Maple
A047620:=n->(4*n-6+I^(1-n)-I^(1+n))/2: seq(A047620(n), n=1..100); # Wesley Ivan Hurt, May 22 2016
-
Mathematica
Table[(4n-6+I^(1-n)-I^(1+n))/2, {n, 80}] (* Wesley Ivan Hurt, May 22 2016 *) LinearRecurrence[{2,-2,2,-1},{0,1,2,5},120] (* Harvey P. Dale, Mar 11 2017 *)
-
Sage
[lucas_number1(n,0,1)+2*n-3 for n in range(1,57)] # Zerinvary Lajos, Jul 06 2008
Formula
From R. J. Mathar, Oct 08 2011: (Start)
G.f.: x^2*(1+3*x^2) / ( (x^2+1)*(x-1)^2 ).
a(n) = 2*n-3+sin(n*Pi/2). (End)
From Wesley Ivan Hurt, May 22 2016: (Start)
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4) for n>4.
a(n) = (4n-6+I^(1-n)-I^(1+n))/2 where i=sqrt(-1).
Sum_{n>=2} (-1)^n/a(n) = Pi/16 + 5*log(2)/8. - Amiram Eldar, Dec 19 2021
Extensions
More terms from Wesley Ivan Hurt, May 22 2016