cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047659 Number of ways to place 3 nonattacking queens on an n X n board.

Original entry on oeis.org

0, 0, 0, 0, 24, 204, 1024, 3628, 10320, 25096, 54400, 107880, 199400, 348020, 579264, 926324, 1431584, 2148048, 3141120, 4490256, 6291000, 8656860, 11721600, 15641340, 20597104, 26797144, 34479744, 43915768, 55411720, 69312516, 86004800, 105919940
Offset: 0

Views

Author

Keywords

Comments

Lucas mentions that the number of ways of placing p <= n non-attacking queens on an n X n chessboard is given by a polynomial in n of degree 2p and attribute the result to Mantel, professor in Delft. Cf. Stanley, exercise 15.

References

  • E. Landau, Naturwissenschaftliche Wochenschrift (Aug. 2 1896).
  • R. P. Stanley, Enumerative Combinatorics, vol. I, exercise 15 in chapter 4 (and its solution) asks one to show the existence of a rational generating function for the number of ways of placing k non-attacking queens on an n X n chessboard.

Crossrefs

Column k=3 of A348129.

Programs

  • Magma
    [(3*(2*n-1)*(-1)^n +4*n^6 -40*n^5 +158*n^4 -300*n^3 +264*n^2 -86*n +3)/24: n in [0..35]]; // Vincenzo Librandi, Sep 21 2015
    
  • Maple
    f:=n-> n^6/6 - 5*n^5/3 + 79*n^4/12 - 25*n^3/2 + 11*n^2 - 43*n/12 + 1/8 + (-1)^n*(n/4 - 1/8); [seq(f(n),n=1..40)]; # N. J. A. Sloane, Feb 16 2013
  • Mathematica
    Table[If[EvenQ[n],n (n-2)^2 (2n^3-12n^2+23n-10)/12,(n-1)(n-3) (2n^4- 12n^3+25n^2-14n+1)/12],{n,0,30}] (* or *) LinearRecurrence[ {5,-8,0,14,-14,0,8,-5,1},{0,0,0,0,24,204,1024,3628,10320},30] (* Harvey P. Dale, Nov 06 2011 *)
  • PARI
    a(n)=if(n%2, (n - 1)*(n - 3)*(2*n^4 - 12*n^3 + 25*n^2 - 14*n + 1), n*(n - 2)^2*(2*n^3 - 12*n^2 + 23*n - 10))/12 \\ Charles R Greathouse IV, Feb 09 2017

Formula

a(n) = n(n - 2)^2(2n^3 - 12n^2 + 23n - 10)/12 if n is even and (n - 1)(n - 3)(2n^4 - 12n^3 + 25n^2 - 14n + 1)/12 if n is odd (Landau, 1896).
a(n) = 5a(n - 1) - 8a(n - 2) + 14a(n - 4) - 14a(n - 5) + 8a(n - 7) - 5a(n - 8) + a(n - 9) for n >= 9.
G.f.: 4(9*x^4 + 35*x^3 + 49*x^2 + 21*x + 6)*x^4/((1 - x)^7*(1 + x)^2).
a(0)=0, a(1)=0, a(2)=0, a(3)=0, a(4)=24, a(5)=204, a(6)=1024, a(7)=3628, a(8)=10320, a(n) = 5*a(n-1)-8*a(n-2)+14*a(n-4)-14*a(n-5)+8*a(n-7)- 5*a(n-8)+ a(n-9). - Harvey P. Dale, Nov 06 2011
a(n) = n^6/6 - 5*n^5/3 + 79*n^4/12 - 25*n^3/2 + 11*n^2 - 43*n/12 + 1/8 + (-1)^n*(n/4 - 1/8) [Chaiken et al.]. - N. J. A. Sloane, Feb 16 2013
a(n) = (3*(2*n-1)*(-1)^n +4*n^6 -40*n^5 +158*n^4 -300*n^3 +264*n^2 -86*n +3)/24. - Antal Pinter, Oct 03 2014
E.g.f.: (exp(2*x)*(3 - 6*x^2 + 8*x^3 + 18*x^4 + 20*x^5 + 4*x^6) -3 - 6*x) / (24*exp(x)). - Vaclav Kotesovec, Feb 15 2015
For n>3, a(n) = A179058(n) -4*(n-2)*A000914(n-2) -2*(n-2)*A002415(n-1) + 2*A008911(n-1) +8*(A001752(n-4) +A007009(n-3)). - Antal Pinter, Sep 20 2015
In general, for m <= n, n >= 3, the number of ways to place 3 nonattacking queens on an m X n board is n^3/6*(m^3 - 3*m^2 + 2*m) - n^2/2*(3*m^3 - 9*m^2 + 6*m) + n/6*(2*m^4 + 20*m^3 - 77*m^2 + 58*m) - 1/24*(39*m^4 - 82*m^3 - 36*m^2 + 88*m) + 1/16*(2*m - 4*n + 1)*(1 + (-1)^(m+1)) + 1/2*(1 + abs(n - 2*m + 3) - abs(n - 2*m + 4))*(1/24*((n - 2*m + 11)^4 - 42*(n - 2*m + 11)^3 + 656*(n - 2*m + 11)^2 - 4518*(n - 2*m + 11) + 11583) - 1/16*(4*m - 2*n - 1)*(1 + (-1)^(n+1))) [Panos Louridas, idee & form 93/2007, pp. 2936-2938]. - Vaclav Kotesovec, Feb 20 2016

Extensions

The formula given in the Rivin et al. paper is wrong.
Entry improved by comments from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), May 30 2001