A047726 Number of different numbers that are formed by permuting digits of n.
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 3, 3, 6
Offset: 1
Examples
From 102 we get 102, 120, 210, 201, 12 and 21, so a(102)=6. From 33950 with 5 digits, one '0', two '3', one '5' and one '9', we get 5! / (1! * 2! * 1! * 1!) = 60 different numbers and a(33950) = 60. - _Bernard Schott_, Oct 20 2019
Links
- A. Dunigan AtLee, Table of n, a(n) for n = 1..100000.
Crossrefs
Cf. A179239. - Aaron Dunigan AtLee, Jul 14 2010
Programs
-
Haskell
import Data.List (permutations, nub) a047726 n = length $ nub $ permutations $ show n -- Reinhard Zumkeller, Jul 26 2011
-
Maple
f:= proc(n) local L; L:= convert(n,base,10); nops(L)!/mul(numboccur(i,L)!,i=0..9); end proc: map(f, [$1..1000]); # Robert Israel, Jul 08 2016
-
Mathematica
pd[n_]:=Module[{p=Permutations[IntegerDigits[n]]},Length[Union [FromDigits/@p]]]; pd/@Range[120] (* Harvey P. Dale, Mar 22 2011 *)
-
PARI
a(n)=n=eval(Vec(Str(n)));(#n)!/prod(i=0,9,sum(j=1,#n,n[j]==i)!) \\ Charles R Greathouse IV, Sep 29 2011
-
PARI
A047726(n)={local(c=Vec(0,10)); apply(d->c[d+1]++, digits(n)); logint(n*10,10)!/prod(i=1,10,c[i]!)} \\ M. F. Hasler, Oct 18 2019
Formula
a(n) << n / (log_10 n)^4.5 by Stirling's approximation. - Charles R Greathouse IV, Sep 29 2011
Extensions
Corrected by Henry Bottomley, Apr 19 2000
Comments