cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047778 Concatenation of the first n numbers in binary (converted to base 10).

Original entry on oeis.org

1, 6, 27, 220, 1765, 14126, 113015, 1808248, 28931977, 462911642, 7406586283, 118505380540, 1896086088653, 30337377418462, 485398038695407, 15532737238253040, 497047591624097297, 15905522931971113522, 508976733823075632723, 16287255482338420247156
Offset: 1

Views

Author

Aaron Gulliver (gulliver(AT)elec.canterbury.ac.nz)

Keywords

Comments

The smallest prime in this sequence is 485398038695407. What is the full subsequence of primes? - N. J. A. Sloane, Oct 03 2015
There is only the one prime in the first 22400 terms, making a second prime > 10^91000. - Hans Havermann, Oct 07 2015

Examples

			a(4) = 1 10 11 100 [base 2] = 220 [base 10].
		

Crossrefs

Cf. A001855 (bit counts, offset by 1), A061168, A066716.
Concatenation of first n numbers in other bases: 2: this sequence, 3: A048435, 4: A048436, 5: A048437, 6: A048438, 7: A048439, 8: A048440, 9: A048441, 10: A007908, 11: A048442, 12: A048443, 13: A048444, 14: A048445, 15: A048446, 16: A048447.

Programs

  • Haskell
    a047778 = (foldl (\v d -> 2*v + d) 0) . concatMap (reverse . unfoldr
       (\x -> if x == 0 then Nothing else Just $ swap $ divMod x 2)) .
       enumFromTo 1
    -- Reinhard Zumkeller, Feb 19 2012
    
  • Maple
    conc:= (x,y) -> x*2^(1+ilog2(y))+y:
    a[1]:= 1:
    for n from 2 to 30 do a[n]:= conc(a[n-1],n) od:
    seq(a[n],n=1..30); # Robert Israel, Oct 07 2015
  • Mathematica
    If[STARTPOINT==1,n={},n=Flatten[IntegerDigits[Range[STARTPOINT-1],2]]]; Table[AppendTo[n,IntegerDigits[w,2]];n=Flatten[n];FromDigits[n,2],{w,STARTPOINT,ENDPOINT}] (* Dylan Hamilton, Aug 04 2010 *)
    f[n_] := FromDigits[ Flatten@ IntegerDigits[ Range@n, 2], 2]; Array[f, 18] (* Robert G. Wilson v, Nov 07 2010 *)
    Module[{n = 1}, NestList[#*2^BitLength[++n] + n &, 1, 25]] (* Paolo Xausa, Sep 30 2024 *)
  • PARI
    cb(a,b)=a<<#binary(b) + b
    a(n)=fold(cb, [1..n]) \\ Charles R Greathouse IV, Jun 21 2017
    
  • PARI
    A047778_vec(N=20,s)=vector(N,k,s=s<M. F. Hasler, Oct 25 2019
    
  • Python
    def a(n): return int("".join([(bin(i))[2:] for i in range(1, n+1)]), 2)
    print([a(n) for n in range(1, 19)]) # Michael S. Branicky, Jan 06 2021
    
  • Python
    from functools import reduce
    def A047778(n): return reduce(lambda i,j:(i<Chai Wah Wu, Feb 26 2023

Formula

a(n) = a(n-1)*2^(1+floor(log_2(n))) + n. - Henry Bottomley, Jan 12 2001
a(n) = 4C / 2^frac(log_2(n)) * n^{n+1} / r(frac(log_2(n)))^n + O(1), where r(x) = 2^{x - 1 + 2^{1-x}}; frac is the fractional part function frac(x) = x - floor(x); and C is the binary Champernowne constant (A066716). (In fact, a(n) is the floor of this expression; the error term is between 1/2 and 1.) r(x) takes on values between e*log(2) and 2 for x in the range 0 to 1. It follows using Stirling's approximation that the radius of convergence for the e.g.f. is log 2. - Franklin T. Adams-Watters, Sep 07 2006

Extensions

More terms from Patrick De Geest, May 15 1999
Name edited by Joe B. Stephen, Jul 22 2023