A047778 Concatenation of the first n numbers in binary (converted to base 10).
1, 6, 27, 220, 1765, 14126, 113015, 1808248, 28931977, 462911642, 7406586283, 118505380540, 1896086088653, 30337377418462, 485398038695407, 15532737238253040, 497047591624097297, 15905522931971113522, 508976733823075632723, 16287255482338420247156
Offset: 1
Examples
a(4) = 1 10 11 100 [base 2] = 220 [base 10].
Links
- Joe B. Stephen, Table of n, a(n) for n = 1..400 (terms 1..250 from Reinhard Zumkeller)
Crossrefs
Programs
-
Haskell
a047778 = (foldl (\v d -> 2*v + d) 0) . concatMap (reverse . unfoldr (\x -> if x == 0 then Nothing else Just $ swap $ divMod x 2)) . enumFromTo 1 -- Reinhard Zumkeller, Feb 19 2012
-
Maple
conc:= (x,y) -> x*2^(1+ilog2(y))+y: a[1]:= 1: for n from 2 to 30 do a[n]:= conc(a[n-1],n) od: seq(a[n],n=1..30); # Robert Israel, Oct 07 2015
-
Mathematica
If[STARTPOINT==1,n={},n=Flatten[IntegerDigits[Range[STARTPOINT-1],2]]]; Table[AppendTo[n,IntegerDigits[w,2]];n=Flatten[n];FromDigits[n,2],{w,STARTPOINT,ENDPOINT}] (* Dylan Hamilton, Aug 04 2010 *) f[n_] := FromDigits[ Flatten@ IntegerDigits[ Range@n, 2], 2]; Array[f, 18] (* Robert G. Wilson v, Nov 07 2010 *) Module[{n = 1}, NestList[#*2^BitLength[++n] + n &, 1, 25]] (* Paolo Xausa, Sep 30 2024 *)
-
PARI
cb(a,b)=a<<#binary(b) + b a(n)=fold(cb, [1..n]) \\ Charles R Greathouse IV, Jun 21 2017
-
PARI
A047778_vec(N=20,s)=vector(N,k,s=s<
M. F. Hasler, Oct 25 2019 -
Python
def a(n): return int("".join([(bin(i))[2:] for i in range(1, n+1)]), 2) print([a(n) for n in range(1, 19)]) # Michael S. Branicky, Jan 06 2021
-
Python
from functools import reduce def A047778(n): return reduce(lambda i,j:(i<
Chai Wah Wu, Feb 26 2023
Formula
a(n) = a(n-1)*2^(1+floor(log_2(n))) + n. - Henry Bottomley, Jan 12 2001
a(n) = 4C / 2^frac(log_2(n)) * n^{n+1} / r(frac(log_2(n)))^n + O(1), where r(x) = 2^{x - 1 + 2^{1-x}}; frac is the fractional part function frac(x) = x - floor(x); and C is the binary Champernowne constant (A066716). (In fact, a(n) is the floor of this expression; the error term is between 1/2 and 1.) r(x) takes on values between e*log(2) and 2 for x in the range 0 to 1. It follows using Stirling's approximation that the radius of convergence for the e.g.f. is log 2. - Franklin T. Adams-Watters, Sep 07 2006
Extensions
More terms from Patrick De Geest, May 15 1999
Name edited by Joe B. Stephen, Jul 22 2023
Comments