cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 30 results. Next

A233568 a(n) is number in A114994 which c-equivalent to c-factorial of n (A047778).

Original entry on oeis.org

1, 5, 23, 151, 1199, 9567, 76543, 1125119, 17978879, 287659519, 4602550271, 73629609983, 1178073743359, 18849179828223, 301586877251583, 9308786131992575, 297840749160955903, 9530903606625042431, 304988913945966280703, 9759645240406772285439
Offset: 1

Views

Author

Vladimir Shevelev, Dec 13 2013

Keywords

Comments

Two numbers n_1 and n_2 are called c-equivalent (n_1~n_2) if in binary they have the same parts of the form 10...0 with k>=0 zeros up to a permutation of them. For example, 6~5, 14~13~11, 12~9.

Examples

			A047778(4)=220 which has parts (1)(10)(1)(1)(100)~(100)(10)(1)(1)(1) which is 151 in decimal. So, a(4)=151.
		

Programs

  • Mathematica
    bitPatt[n_]:=bitPatt[n]=Split[IntegerDigits[n,2],#1>#2||#2==0&];Map[FromDigits[Flatten[Reverse[Sort[bitPatt[FromDigits[Flatten[Map[IntegerDigits[#,2]&,Range[#]]],2]]]]],2]&,Range[20]] (* Peter J. C. Moses, Dec 14 2013 *)

A007908 Triangle of the gods: to get a(n), concatenate the decimal numbers 1,2,3,...,n.

Original entry on oeis.org

1, 12, 123, 1234, 12345, 123456, 1234567, 12345678, 123456789, 12345678910, 1234567891011, 123456789101112, 12345678910111213, 1234567891011121314, 123456789101112131415, 12345678910111213141516, 1234567891011121314151617, 123456789101112131415161718
Offset: 1

Views

Author

R. Muller

Keywords

Comments

For the name "triangle of the gods" see Pickover link. - N. J. A. Sloane, Dec 15 2019
Number of digits: A058183(n) = A055642(a(n)); sums of digits: A037123(n) = A007953(a(n)). - Reinhard Zumkeller, Aug 10 2010
Charles Nicol and John Selfridge ask if there are infinitely many primes in this sequence - see the Guy reference. - Charles R Greathouse IV, Dec 14 2011
Stephan finds no primes in the first 839 terms. I checked that there are no primes in the first 5000 terms. Heuristically there are infinitely many, about 0.5 log log n through the n-th term. - Charles R Greathouse IV, Sep 19 2012 [Expanded search to 20000 without finding any primes. - Charles R Greathouse IV, Apr 17 2014] [Independent search extended to 64000 terms without finding any primes. - Dana Jacobsen, Apr 25 2014]
Elementary congruence arguments show that primes can occur only at indices congruent to 1, 7, 13, or 19 mod 30. - Roderick MacPhee, Oct 05 2015
A note on heuristics: I wrote a quick program to count primes in sequences which are like A007908 but start at k instead of 1. I ran this for k = 1 to 100 and counted the primes up to 1000 (1000 possibilities for k = 1, 999 for k = 2, etc. up to 901 for k = 100). I then compared this to the expected count which is 0 if the number N is divisible by 2, 3, or 5 and 15/(4 log N) otherwise. (If N < 43 I counted the number as 1 instead.) k = 1 has 1.788 expected primes but only 0 actual (of course). k = 2 has 2.268 expected but 4 actual (see A262571, A089987). In total the expectation is 111.07 and the actual count is 110, well within the expected error of +/- 10.5. - Charles R Greathouse IV, Sep 28 2015
Early bird numbers for n > 1: a(2) = A116700(1) = 12; a(3) = A116700(52) = 123; a(4) = A116700(725) = 1234; a(5) = A116700(8074) = 12345; a(6) = A116700(85846) = 123456. - Reinhard Zumkeller, Dec 13 2012
For n < 10^6, a(n)/A000217(n) is an integer for n = 1, 2, and 5. The integers are 1, 4, and 823 (a prime), respectively. - Derek Orr, Sep 04 2014; Max Alekseyev, Sep 30 2015
In order to be a prime, a(n) must end in a digit 1, 3, 7 or 9, so only 4 among 10 consecutive values can be prime. (But a(64000) already has A058183(64000) > 300000 digits.) Also, a(64001) and a(64011) and more generally a(64001+10k) is divisible by 3 unless k == 2 (mod 3), but for k = 2, 5, 8, ... 23 these are divisible by small primes < 999. a(64261) is the first serious candidate in this subsequence. - M. F. Hasler, Sep 30 2015
There are no primes in the first 10^5 terms. - Max Alekseyev, Oct 03 2015; Oct 11 2015
There are no primes in the first 200000 terms. - Serge Batalov, Oct 24 2015
There is a distributed project for continued search, using PRPNet/PFGW software; see the Mersenne Forum link below. - Serge Batalov, Oct 18 2015
It appears that the Mersenne Forum search reached n = 344869 without finding a prime, and was then abandoned. It would be nice if someone could recover the final version of that link from the Wayback machine - the Great Smarandache PRPrime search, http://99.121.249.54:1200 - so that we have a record of how far they searched. - N. J. A. Sloane, Apr 09 2018
The web page https://www.mersenneforum.org/showthread.php?t=20527&page=9 has a comment from Serge Balatov that seems to say that the search reached 10^6 without finding a prime. It would be nice to have this confirmed, and to get more details about how it was done. - N. J. A. Sloane, Dec 15 2019
The expected number of primes among the first million terms is about 0.6. - Ernst W. Mayer, Oct 09 2015
A few semiprimes exist among the early terms, but then become scarce: see A046461. For the base-2 analog of this sequence (A047778), there is a 15-decimal digit prime, but Hans Havermann has shown that the second prime would have more than 91000 digits. - N. J. A. Sloane, Oct 08 2015

References

  • R. K. Guy, Unsolved Problems in Number Theory, Section A3, page 15, of 3rd edition, Springer, 2010.

Crossrefs

See A057137 for another version.
Cf. A033307, A053064, A000422 (left concatenations)
If we concatenate 1 through n but leave out k, we get sequences A262571 (leave out 1) through A262582 (leave out 12), etc., and again we can ask for the smallest prime in each sequence. See A262300 for a summary of these results. Primes seem to exist if we search far enough. - N. J. A. Sloane, Sep 29 2015
Concatenation of first n numbers in other bases: 2: A047778, 3: A048435, 4: A048436, 5: A048437, 6: A048438, 7: A048439, 8: A048440, 9: A048441, 10: this sequence, 11: A048442, 12: A048443, 13: A048444, 14: A048445, 15: A048446, 16: A048447. - Dylan Hamilton, Aug 11 2010
Entries that give the primes in sequences of this type: A089987, A262298, A262300, A262552, A262555.
For semiprimes see A046461.
See also A007376 (the almost-natural numbers), A071620 (primes in that sequence).
See also A033307 (the Champernowne constant) and A176942 (the Champernowne primes). A262043 is a variant of the present sequence.
A002782 is an amusing cousin of this sequence.
Least prime factor: A075019.

Programs

  • Haskell
    a007908 = read . concatMap show . enumFromTo 1 :: Integer -> Integer
    -- Reinhard Zumkeller, Dec 13 2012
    
  • Magma
    [Seqint(Reverse(&cat[Reverse(Intseq(k)): k in [1..n]])): n in [1..17]];  // Bruno Berselli, May 27 2011
    
  • Maple
    A055642 := proc(n) max(1, ilog10(n)+1) ; end: A007908 := proc(n) if n = 1 then 1; else A007908(n-1)*10^A055642(n)+n ; fi ; end: seq(A007908(n),n=1..12) ; # R. J. Mathar, May 31 2008
    # second Maple program:
    a:= proc(n) a(n):= `if`(n=0, 0, parse(cat(a(n-1), n))) end:
    seq(a(n), n=1..22);  # Alois P. Heinz, Jan 12 2021
  • Mathematica
    Table[FromDigits[Flatten[IntegerDigits[Range[n]]]], {n, 20}] (* Alonso del Arte, Sep 19 2012 *)
    FoldList[#2 + #1 10^IntegerLength[#2] &, Range[20]] (* Eric W. Weisstein, Nov 06 2015 *)
    FromDigits /@ Flatten /@ IntegerDigits /@ Flatten /@ Rest[FoldList[List, {}, Range[20]]] (* Eric W. Weisstein, Nov 04 2015 *)
    FromDigits /@ Flatten /@ IntegerDigits /@ Rest[FoldList[Append, {}, Range[20]]] (* Eric W. Weisstein, Nov 04 2015 *)
  • Maxima
    a[1]:1$ a[n]:=a[n-1]*10^floor(log(10*n)/log(10))+n$ makelist(a[n],n,1,17);  /* Bruno Berselli, May 27 2011 */
    
  • PARI
    a(n)=my(s="");for(k=1,n,s=Str(s,k));eval(s) \\ Charles R Greathouse IV, Sep 19 2012
    
  • PARI
    A007908(n,a=0)={for(d=1,#Str(n),my(t=10^d);for(k=t\10,min(t-1,n),a=a*t+k));a} \\ M. F. Hasler, Sep 30 2015
    
  • Python
    def a(n): return int("".join(map(str, range(1, n+1))))
    print([a(n) for n in range(1, 18)]) # Michael S. Branicky, Jan 12 2021
    
  • Python
    from functools import reduce
    def A007908(n): return reduce(lambda i,j:i*10**len(str(j))+j,range(1,n+1)) # Chai Wah Wu, Feb 27 2023

Formula

a(n) = n + a(n-1)*10^A055642(n). - R. J. Mathar, May 31 2008
a(n) = floor(C*10^(A058183(n))) with C = A033307. - José de Jesús Camacho Medina, Aug 19 2015

Extensions

Name edited by N. J. A. Sloane, Dec 15 2019

A029447 Numbers k that divide the (right) concatenation of all numbers <= k written in base 2 (most significant digit on left).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 16, 26, 32, 38, 40, 46, 64, 96, 128, 138, 192, 228, 256, 512, 640, 1024, 2048, 4096, 4192, 4766, 4790, 5142, 5952, 6144, 6866, 8122, 8192, 8448, 10240, 11283, 11392, 12288, 14780, 15360, 15744, 16384, 17408, 20841, 20866, 32768, 58496, 59104
Offset: 1

Views

Author

Keywords

Comments

All powers of 2 are in the sequence. - Chai Wah Wu, Nov 10 2014
Numbers k that divide A047778(k). - Michel Marcus, Nov 11 2014

Examples

			3 is in the sequence because the concatenation is 1 10 11, binary expansion of 27, that is divisible by 3.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2^13], Mod[FromDigits[Flatten[IntegerDigits[#, 2] & /@ Range@ #], 2], #] == 0 &] (* Michael De Vlieger, Aug 29 2015 *)
  • PARI
    lista(nn) = {vs = []; for (n=1, nn, vs = concat(vs, binary(n)); val = subst(Pol(vs), x, 2); if (val % n == 0, print1(n, ", ")););} \\ Michel Marcus, Nov 11 2014

Extensions

More terms from Scott Lindhurst (ScottL(AT)alumni.princeton.edu)
More terms from David W. Wilson
a(47)-a(49) from Chai Wah Wu, Nov 10 2014

A048435 Take the first n numbers written in base 3, concatenate them, then convert from base 3 to base 10.

Original entry on oeis.org

1, 5, 48, 436, 3929, 35367, 318310, 2864798, 77349555, 2088437995, 56387825876, 1522471298664, 41106725063941, 1109881576726421, 29966802571613382, 809103669433561330, 21845799074706155927, 589836575017066210047, 15925587525460787671288, 429990863187441267124796
Offset: 1

Views

Author

Patrick De Geest, May 15 1999

Keywords

Comments

The first three primes in this sequence occur for n = 2 (a(2) = 5), n = 5 (a(5) = 3929), and n = 82 (a(82) = 1.1247...*10^140). - Kurt Foster, Oct 24 2015 [Comment added by N. J. A. Sloane, Oct 25 2015]
According to a comment made by Jeff Peltier following the "Most Wanted Prime" video, n = 2546 also gives a prime. See A360503. - N. J. A. Sloane, Feb 17 2023

Examples

			a(6): (1)(2)(10)(11)(12)(20) = 1210111220_3 = 35367.
		

Crossrefs

Primes: A360503.
Concatenation of first n numbers in other bases: 2: A047778, 3: this sequence, 4: A048436, 5: A048437, 6: A048438, 7: A048439, 8: A048440, 9: A048441, 10: A007908, 11: A048442, 12: A048443, 13: A048444, 14: A048445, 15: A048446, 16: A048447.

Programs

  • Magma
    [n eq 1 select 1 else Self(n-1)*3^(1+Ilog(3, n))+n: n in [1..20]]; // Vincenzo Librandi, Dec 30 2012
  • Mathematica
    If[STARTPOINT==1,n={},n=Flatten[IntegerDigits[Range[STARTPOINT-1],3]]]; Table[AppendTo[n,IntegerDigits[w,3]];n=Flatten[n];FromDigits[n,3],{w,STARTPOINT,ENDPOINT}] (* Dylan Hamilton, Aug 09-04 2010 *)
    f[n_]:= FromDigits[Flatten@IntegerDigits[Range@n, 3], 3]; Array[f, 20] (* Vincenzo Librandi, Dec 30 2012 *)

A048436 Take the first n numbers written in base 4, concatenate them, then convert from base 4 to base 10.

Original entry on oeis.org

1, 6, 27, 436, 6981, 111702, 1787239, 28595832, 457533321, 7320533146, 117128530347, 1874056485564, 29984903769037, 479758460304606, 7676135364873711, 491272663351917520, 31441450454522721297, 2012252829089454163026, 128784181061725066433683
Offset: 1

Views

Author

Patrick De Geest, May 15 1999

Keywords

Comments

There is no prime among the first 5000 terms (emails from Kurt Foster, Oct 21 2015 and Oct 24 2015). When is the first prime? - N. J. A. Sloane, Oct 25 2015
There is no prime among the first 45000 terms. - Giovanni Resta, Jun 07 2018

Examples

			a(7): (1)(2)(3)(10)(11)(12)(13) = 12310111213_4 = 1787239.
		

Crossrefs

Cf. A014825.
Concatenation of first n numbers in other bases: 2: A047778, 3: A048435, 4: this sequence, 5: A048437, 6: A048438, 7: A048439, 8: A048440, 9: A048441, 10: A007908, 11: A048442, 12: A048443, 13: A048444, 14: A048445, 15: A048446, 16: A048447. - Dylan Hamilton, Aug 11 2010

Programs

  • Magma
    [n eq 1 select 1 else Self(n-1) * 4^(1+Ilog(4,n)) + n: n in [1..20]]; // Jason Kimberley, Nov 27 2012
    
  • Mathematica
    a[n_]:= FromDigits[Flatten@IntegerDigits[Range@n, 4], 4]; Array[a, 20] (* Vincenzo Librandi, Dec 30 2012 *)
  • Python
    from functools import reduce
    def A048436(n): return reduce(lambda i,j:(i<<(bool((m:=j.bit_length())&1)<<1)+(m&-2))+j,range(n+1)) # Chai Wah Wu, Feb 26 2023

Formula

a(n) = a(n-1) * 4^(1 + floor(log4(n))) + n. [Moved from A117640 by Jason Kimberley, Nov 27 2012]

A048437 Take the first n numbers written in base 5, concatenate them, then convert from base 5 to base 10.

Original entry on oeis.org

1, 7, 38, 194, 4855, 121381, 3034532, 75863308, 1896582709, 47414567735, 1185364193386, 29634104834662, 740852620866563, 18521315521664089, 463032888041602240, 11575822201040056016, 289395555026001400417, 7234888875650035010443, 180872221891250875261094
Offset: 1

Views

Author

Patrick De Geest, May 15 1999

Keywords

Comments

The first three primes in this sequence occur for n = 2 (a(2) = 7), n = 113 (a(113) = 7.4484...*10^216), n = 162 (a(162) = 1.5188...*10^346). - Kurt Foster, Oct 24 2015 [Comment added by N. J. A. Sloane, Oct 25 2015]

Examples

			a(7) = 1 2 3 4 10 11 12 = 3034532_10.
		

Crossrefs

Cf. A014827.
Concatenation of first n numbers in other bases: 2: A047778, 3: A048435, 4: A048436, 5: this sequence, 6: A048438, 7: A048439, 8: A048440, 9: A048441, 10: A007908, 11: A048442, 12: A048443, 13: A048444, 14: A048445, 15: A048446, 16: A048447.

Programs

  • Magma
    [n eq 1 select 1 else Self(n-1)*5^(1+Ilog(5, n))+n: n in [1..20]]; // Vincenzo Librandi, Dec 30 2012
  • Mathematica
    If[STARTPOINT==1, n={}, n=Flatten[IntegerDigits[Range[STARTPOINT-1], 5]]]; Table[AppendTo[n, IntegerDigits[w, 5]]; n=Flatten[n]; FromDigits[n, 5], {w, STARTPOINT, ENDPOINT}] (* Dylan Hamilton, Aug 11 2010 *)
    f[n_]:= FromDigits[Flatten@IntegerDigits[Range@n, 5], 5]; Array[f, 20] (* Vincenzo Librandi, Dec 30 2012 *)

A048447 Take the first n numbers written in base 16, concatenate them, then convert from base 16 to base 10.

Original entry on oeis.org

1, 18, 291, 4660, 74565, 1193046, 19088743, 305419896, 4886718345, 78187493530, 1250999896491, 20015998343868, 320255973501901, 5124095576030430, 81985529216486895, 20988295479420645136, 5373003642731685154833, 1375488932539311399637266, 352125166730063718307140115
Offset: 1

Views

Author

Patrick De Geest, May 15 1999

Keywords

Examples

			a(16) = (1)(2)(3)(4)(5)(6)(7)(8)(9)(A)(B)(C)(D)(E)(F)(10) = 123456789ABCDEF10_16 = 20988295479420645136.
		

Crossrefs

Cf. A014899.
Concatenation of first n numbers in other bases: 2: A047778, 3: A048435, 4: A048436, 5: A048437, 6: A048438, 7: A048439, 8: A048440, 9: A048441, 10: A007908, 11: A048442, 12: A048443, 13: A048444, 14: A048445, 15: A048446, 16: this sequence.

Programs

  • Magma
    [n eq 1 select 1 else Self(n-1)*16^(1+Ilog(16, n))+n: n in [1..20]]; // Vincenzo Librandi, Dec 30 2012
    
  • Mathematica
    If[STARTPOINT==1, n={}, n=Flatten[IntegerDigits[Range[STARTPOINT-1], 16]]]; Table[AppendTo[n, IntegerDigits[w, 16]]; n=Flatten[n]; FromDigits[n, 16], {w, STARTPOINT, ENDPOINT}] (* Dylan Hamilton, Aug 11 2010 *)
    f[n_]:= FromDigits[Flatten@IntegerDigits[Range@n, 16], 16]; Array[f, 20] (* Vincenzo Librandi, Dec 30 2012 *)
  • Python
    from functools import reduce
    def A048447(n): return reduce(lambda i,j:(i<<(bool((m:=j.bit_length())&3)<<2)+(m&-4))+j,range(n+1)) # Chai Wah Wu, Feb 26 2023

A048438 Take the first n numbers written in base 6, concatenate them, then convert from base 6 to base 10.

Original entry on oeis.org

1, 8, 51, 310, 1865, 67146, 2417263, 87021476, 3132773145, 112779833230, 4060073996291, 146162663866488, 5261855899193581, 189426812370968930, 6819365245354881495, 245497148832775733836, 8837897357979926418113, 318164304887277351052086, 11453914975941984637875115
Offset: 1

Views

Author

Patrick De Geest, May 15 1999

Keywords

Comments

The first three primes in this sequence occur for n = 11 (a(11) = 4060073996291), n = 43 (a(43) = 4.3194...*10^68), n = 173 (a(n) = 1.3014...*10^372) (email from Kurt Foster, Oct 24 2015). - N. J. A. Sloane, Oct 25 2015

Examples

			a(8) = (1)(2)(3)(4)(5)(10)(11)(12) = 12345101112_6 = 87021476.
		

Crossrefs

Cf. A014829.
Concatenation of first n numbers in other bases: 2: A047778, 3: A048435, 4: A048436, 5: A048437, 6: this sequence, 7: A048439, 8: A048440, 9: A048441, 10: A007908, 11: A048442, 12: A048443, 13: A048444, 14: A048445, 15: A048446, 16: A048447.

Programs

  • Magma
    [n eq 1 select 1 else Self(n-1)*6^(1+Ilog(6, n))+n: n in [1..20]]; // Vincenzo Librandi, Dec 30 2012
  • Mathematica
    If[STARTPOINT==1, n={}, n=Flatten[IntegerDigits[Range[STARTPOINT-1], 6]]]; Table[AppendTo[n, IntegerDigits[w, 6]]; n=Flatten[n]; FromDigits[n, 6], {w, STARTPOINT, ENDPOINT}] (* Dylan Hamilton, Aug 11 2010 *)
    Table[FromDigits[Flatten[IntegerDigits[#,6]&/@Range[n]],6],{n,20}] (* Harvey P. Dale, Sep 29 2012 *)

A048439 Take the first n numbers written in base 7, concatenate them, then convert from base 7 to base 10.

Original entry on oeis.org

1, 9, 66, 466, 3267, 22875, 1120882, 54923226, 2691238083, 131870666077, 6461662637784, 316621469251428, 15514451993319985, 760208147672679279, 37250199235961284686, 1825259762562102949630, 89437728365543044531887, 4382448689911609182062481
Offset: 1

Views

Author

Patrick De Geest, May 15 1999

Keywords

Comments

The first two primes in this sequence occur for n = 10 (a(10) = 131870666077) and n = 37 (a(37) = 569432644200356239518976257368822195317881440478377541397) (email from Kurt Foster, Oct 24 2015). What is the next prime? - N. J. A. Sloane, Oct 25 2015
After a(37), there are no more primes through a(4000) = 2.2670...*10^14538. - Jon E. Schoenfield, Jan 19 2018

Examples

			a(8): (1)(2)(3)(4)(5)(6)(10)(11) = 1234561011_7 = 54923226.
		

Crossrefs

Cf. A014830.
Concatenation of first n numbers in other bases: 2: A047778, 3: A048435, 4: A048436, 5: A048437, 6: A048438, 7: this sequence, 8: A048440, 9: A048441, 10: A007908, 11: A048442, 12: A048443, 13: A048444, 14: A048445, 15: A048446, 16: A048447.

Programs

  • Magma
    [n eq 1 select 1 else Self(n-1)*7^(1+Ilog(7, n))+n: n in [1..20]]; // Vincenzo Librandi, Dec 30 2012
  • Mathematica
    a[n_]:= FromDigits[Flatten@IntegerDigits[Range@n, 7], 7]; Array[a, 20] (* Vincenzo Librandi, Dec 30 2012 *)

A048440 Take the first n numbers written in base 8, concatenate them, then convert from base 8 to base 10.

Original entry on oeis.org

1, 10, 83, 668, 5349, 42798, 342391, 21913032, 1402434057, 89755779658, 5744369898123, 367639673479884, 23528939102712589, 1505852102573605710, 96374534564710765455, 6167970212141488989136, 394750093577055295304721, 25264005988931538899502162
Offset: 1

Views

Author

Patrick De Geest, May 15 1999

Keywords

Comments

83 is the only prime in this sequence among the first 3000 terms (email from Kurt Foster, Oct 24 2015). - N. J. A. Sloane, Oct 25 2015

Examples

			a(9): (1)(2)(3)(4)(5)(6)(7)(10)(11) = 12345671011_8 = 1402434057.
		

Crossrefs

Cf. A014831.
Concatenation of first n numbers in other bases: 2: A047778, 3: A048435, 4: A048436, 5: A048437, 6: A048438, 7: A048439, 8: this sequence, 9: A048441, 10: A007908, 11: A048442, 12: A048443, 13: A048444, 14: A048445, 15: A048446, 16: A048447.

Programs

  • Magma
    [n eq 1 select 1 else Self(n-1)*8^(1+Ilog(8, n))+n: n in [1..20]]; // Vincenzo Librandi, Dec 30 2012
    
  • Mathematica
    If[STARTPOINT==1, n={}, n=Flatten[IntegerDigits[Range[STARTPOINT-1], 8]]]; Table[AppendTo[n, IntegerDigits[w, 8]]; n=Flatten[n]; FromDigits[n, 8], {w, STARTPOINT, ENDPOINT}] (* Dylan Hamilton, Aug 11 2010 *)
    Table[FromDigits[Flatten[IntegerDigits[#,8]&/@Range[n]],8],{n,20}] (* Harvey P. Dale, Dec 07 2012 *)
  • Python
    from functools import reduce
    def A048440(n): return reduce(lambda i,j:(i<<3*(1+(j.bit_length()-1)//3))+j,range(n+1)) # Chai Wah Wu, Feb 26 2023
Showing 1-10 of 30 results. Next