A047786 a(n) = (9*n^4 + 4*n^3 - n)/2.
0, 6, 87, 417, 1278, 3060, 6261, 11487, 19452, 30978, 46995, 68541, 96762, 132912, 178353, 234555, 303096, 385662, 484047, 600153, 735990, 893676, 1075437, 1283607, 1520628, 1789050, 2091531, 2430837, 2809842, 3231528, 3698985, 4215411, 4784112, 5408502
Offset: 0
Examples
From _Mikhail Lavrov_, Jun 12 2023: (Start) For n=1 the a(1)=6 ways to choose two points are illustrated below: . . X o o X o o o o X o o X . o o X o o o o o X X o o o o o X o o . o o o X X o o X X o o o . (End)
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- B. T. Bennett and R. B. Potts, Arrays and brooks, J. Austral. Math. Soc., 7 (1967), 23-31 (see p. 30).
- B. T. Bennett and R. B. Potts, Arrays and brooks, J. Austral. Math. Soc., 7 (1967), 23-31. [Annotated scanned copy]
- Index entries for linear recurrences with constant coefficients, signature (5, -10, 10, -5, 1).
Crossrefs
Programs
-
GAP
List([0..30], n-> n*(9*n^3 +4*n^2 -1)/2) # G. C. Greubel, May 17 2019
-
Magma
[(9*n^4+4*n^3-n)/2: n in [0..40]]; // Vincenzo Librandi, May 29 2016
-
Mathematica
Table[(9n^4+4n^3-n)/2,{n,0,30}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{0,6,87,417,1278},30] (* Harvey P. Dale, May 26 2016 *)
-
PARI
{a(n) = n*(9*n^3 +4*n^2 -1)/2}; \\ G. C. Greubel, May 17 2019
-
Sage
[n*(9*n^3 +4*n^2 -1)/2 for n in (0..30)] # G. C. Greubel, May 17 2019
Formula
O.g.f.: 3*x*(2 + 19*x + 14*x^2 + x^3)/(1-x)^5. - R. J. Mathar, Feb 26 2008
E.g.f.: x*(12 + 75*x + 58*x^2 + 9*x^3)*exp(x)/2. - Robert Israel, May 29 2016
Comments