A047787 Decimal expansion of (-1)*Gamma'(1/3)/Gamma(1/3) where Gamma(x) denotes the Gamma function.
3, 1, 3, 2, 0, 3, 3, 7, 8, 0, 0, 2, 0, 8, 0, 6, 3, 2, 2, 9, 9, 6, 4, 1, 9, 0, 7, 4, 2, 8, 7, 2, 6, 8, 8, 5, 4, 1, 5, 5, 4, 2, 8, 2, 9, 6, 7, 2, 0, 4, 1, 8, 0, 6, 4, 1, 9, 2, 7, 5, 1, 2, 0, 3, 0, 3, 5, 1, 7, 0, 7, 5, 7, 1, 6, 8, 7, 5, 5, 0, 6, 3, 0, 8, 9, 4, 3, 3, 1, 8, 9, 6, 1, 8, 3, 7, 4, 9, 6, 7, 1, 2, 4, 6, 9
Offset: 1
Examples
3.1320337...
References
- S. J. Patterson, "An introduction to the theory of the Riemann zeta function", Cambridge studies in advanced mathematics no. 14, p. 135
Links
Programs
-
Magma
SetDefaultRealField(RealField(100)); R:= RealField(); EulerGamma(R) + (3/2)*Log(3) + Pi(R)/(2*Sqrt(3)); // G. C. Greubel, Aug 28 2018
-
Mathematica
RealDigits[PolyGamma[1/3], 10, 105] // First (* Jean-François Alcover, Aug 08 2015 *)
-
PARI
Euler+(3/2)*log(3)+Pi/(2*sqrt(3))
Formula
Gamma'(1/3)/Gamma(1/3)=-EulerGamma-(3/2)*log(3)-Pi/(2*sqrt(3))=-3.13203378002... where EulerGamma is the Euler-Mascheroni constant (A001620).
Comments