cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047787 Decimal expansion of (-1)*Gamma'(1/3)/Gamma(1/3) where Gamma(x) denotes the Gamma function.

Original entry on oeis.org

3, 1, 3, 2, 0, 3, 3, 7, 8, 0, 0, 2, 0, 8, 0, 6, 3, 2, 2, 9, 9, 6, 4, 1, 9, 0, 7, 4, 2, 8, 7, 2, 6, 8, 8, 5, 4, 1, 5, 5, 4, 2, 8, 2, 9, 6, 7, 2, 0, 4, 1, 8, 0, 6, 4, 1, 9, 2, 7, 5, 1, 2, 0, 3, 0, 3, 5, 1, 7, 0, 7, 5, 7, 1, 6, 8, 7, 5, 5, 0, 6, 3, 0, 8, 9, 4, 3, 3, 1, 8, 9, 6, 1, 8, 3, 7, 4, 9, 6, 7, 1, 2, 4, 6, 9
Offset: 1

Views

Author

Benoit Cloitre, May 24 2003

Keywords

Comments

Decimal expansion of -psi(1/3). - Benoit Cloitre, Mar 07 2004

Examples

			3.1320337...
		

References

  • S. J. Patterson, "An introduction to the theory of the Riemann zeta function", Cambridge studies in advanced mathematics no. 14, p. 135

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField();
    EulerGamma(R) + (3/2)*Log(3) + Pi(R)/(2*Sqrt(3)); // G. C. Greubel, Aug 28 2018
  • Mathematica
    RealDigits[PolyGamma[1/3], 10, 105] // First (* Jean-François Alcover, Aug 08 2015 *)
  • PARI
    Euler+(3/2)*log(3)+Pi/(2*sqrt(3))
    

Formula

Gamma'(1/3)/Gamma(1/3)=-EulerGamma-(3/2)*log(3)-Pi/(2*sqrt(3))=-3.13203378002... where EulerGamma is the Euler-Mascheroni constant (A001620).